o为直线ac上一点,ob,od,oe,为射线,od是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:56:40
o为直线ac上一点,ob,od,oe,为射线,od是
如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC,OD,OE,且OC平分∠AOD,

∠2与∠1是哪个?有图吗?再问:再答:����ocƽ�֡�AOD��AOC��50º���AOD��2��AOC��100º�ߡ�AOB��180º���BOD��180

如图,已知O为直线AC上的一点,过点O引三条射线OB OD OE,且OD平分角AOB

1.∵角平分线∴∠BOD=1/2∠AOB,∠BOE=1/2∠BOC∴∠DOE=∠BOD+∠BOE=12/(∠A0B+BOC)=1/2∠AOC=90°2.∵3角EOB等于角EOC,角DOE等于50度∴∠

关于线段的数学题已知O为直线AB上的一点,∠AOC=∠BOD,问射线OC与OD在一条直线上吗,为什么?

不一定哈.因为要看点O的位置,若点O在AB之间,那么很肯定的说射线OC与OD不在一条直线上;若点O在A点的左侧或者在B点的右侧,即点O不在AB之间,那么射线OC与OD在一条直线上.

如图,点A、B在⊙O上,半径OA垂直直线AC与点A,OD⊥OB,连接AB交OC于点D.AC=CD

设AC=XOC=1+XOA^2=(1+X)^2-X^2=1+2X且,tan∠OCA=OA/AC=(根号5)/2带入,解得X=2或X=-(2/5)所以X=2再问:2是怎么解的?再问:我怎么解不出来?再答

O是直线AB上一点OC为任意一条射线,OD平分角BOC,OE平分角AOC,

1、∠COD与∠COE互余,2、∠AOD的补角是∠BOD;∠BOE的补角是∠AOE若∠BOD=68°,∠COD=68°,∠EOC=22°再问:怎么没有地3个呢如果给我我采纳你再答:不是都回答了吗?哪里

已知:如图,点O为直线AB上一点,过点O在直线AB的同侧作射线OD、OC、OE,且OD是∠AOC的平分线,∠DOE=90

OE是∠BOC的平分线.理由如下:∵OD是∠AOC的平分线,∴∠AOD=∠COD,又∠DOE=90°,∴∠COD+∠EOC=90°,∴∠AOD+∠EOB=90°,∴∠EOB=∠EOC,∴OE是∠BOC

如图所示,已知O为直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,∠BOE=2分之1∠EOC,∠DO

算是个二元一次方程组应用题.设∠AOD为a,∠BOE为b,由题意得:a+b=70°2a+3b=180°(平角性质)得a=30°,b=40°.∠EOC=2b=80°

O为直线AB上一点,过O作射线OP,OC平分角AOP,OD平分角BOP,OM平分角AOD

∠AOC=180-∠COB∠AOM=∠DOM∠BOD=90-∠COB=90-(180-∠AOC)=∠AOC-90∠COM=90+∠DOM=1/2*(270-∠AOC)因此∠AOC=∠BOD+90=27

如图所示,O为直线AB上一点,OC为任一射线,OD平分∠AOC,OE平分∠COB.

(1)OD平分∠AOC,OE平分∠COB,则有∠AOD=∠COD,∠COE=∠BOE;又因为∠AOC+∠BOC=π,则有∠DOC+∠COE=π/2.且∠COE=∠BOE.即与∠DOC互余的角为∠COE

o是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,∠BOE=1/3∠EOC,∠DOE=60°,求∠

∵∶OD是∠BOA的角平分线,∴∠AOD=∠BOD∠AOD+∠BOD+∠BOE+∠EOC=180°∠DOB+∠EOB=60°∠AOD+∠EOC=120°又∵∠AOD=∠BOD∠EOB=1/3∠EOC∠

如图,△ABC中,角ABC=90°,O为BC上一点,以O为圆心,OB为半径的圆O切AC于M,交BC于D,CD=2,OD=

(1)连OM∵∠ABC=90°且○O与AC相切于M∴AB=AM∵OD=3,CD=2∴BO=MO=3,OC=5在Rt△OMC中CM=根号(OC^2-OM^2)=根号(5^2-3^2)=4tan∠ACB=

如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D

(1)证明:∵AC是⊙切线,∴OA⊥AC,∴∠OAC=90°,∴∠OAB+∠CAB=90°.∵OC⊥OB,∴∠COB=90°,∴∠ODB+∠B=90°.∵OA=OB∴∠OAB=∠B,∴∠CAB=∠OD

已知平行四边形ABCD的两条对角线AC,BD交于E.O是任意一点,求证:OA+OB+OC+OD=4OE.(OA,OB,O

OA-OE=EAOB-OE=EBOC-OE=ECOD-OE=EDOA-OE+OB-OE+OC-OE+OD-OE=EA+EB+EC+ED=0即OA+OB+OC+OD=4OE

已知AB是圆O的直径,C是圆O上的一点,连结AC,过点C作直线CD垂直AB交AB与点D,E是OB上的一点,直线

证明:延长CD交圆O于H点,连接AH∵CD垂直圆O的直径AB即CH垂直圆O的直径AB∴弧AC=弧AH(垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧)从而∠ACH=∠AHC①又∠AFC=∠AHC(

已知AB是圆O的直径,C是圆O上的一点,连结AC,过点C作直线CD垂直AB交AB与点D,E是OB上的一点,直线CE与与圆

延长CD交圆O于H点,连接AH∵CD垂直圆O的直径AB即CH垂直圆O的直径AB∴弧AC=弧AH 从而∠ACH=∠AHC 又∠AFC=∠AHC由①②得∠ACH=∠AFC即∠AFC=∠

如图,点A,B在圆O上,直线AC是圆O的切线,OD垂直OB,连接AB交OC于点D求证:AC=CD若AC=2,AO=根号五

如图,(1)∵AC切圆O于C,∴∠1+∠2=90°,∵OB⊥OD,∴∠B+∠4=90°,∵OA=OB,∴∠1=∠B,又∵∠3=∠4∴∠2=∠3,∴AC=CD (2)∵OC=√(AC²

如图所示,已知O为直线AC上一点,

设∠BOE为x∵OD平分∠AOB,∠DOE=60°可得方程 2(60-x)+4x=180    解得x=30∴∠EOC=3x=90°

如图,点A,B在圆O上,直线AC是圆O的切线,OD垂直于OB,连接AB交OC于点D.求证:AC=

∠B=∠OAB,∠B+∠ODB=∠OAB+∠DAC=90°∴∠ODB=∠DAC又∵∠ODB=∠ADC∴∠ADC=∠DAC=∠ODB∴CD=AC