P(11,2) 作圆的两条相互垂直的弦,ABCD面积的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 00:45:18
P(11,2) 作圆的两条相互垂直的弦,ABCD面积的取值范围
由单位圆外一点p作圆的两条切线 求两切线长的最小向量积?

0是错的,一些童鞋的误区是,0就是最小的数,其实比0小的还有负数结果应该是-3+2√2(不知道有没有算对,反正是负数)

点p是抛物线C1:x^2=2py上的动点,过点p作圆c2:x^2+(Y-3)=1的两条切线交y轴于A,B两点,已知定点Q

(1)Q(1,13/4)到抛物线C1的准线:y=-p/2的距离是13/4+p/2=7/2,p=1/2,设抛物线C1:x^2=y上的动点P(t,t^2),过P作圆C2:x^2+(y-3)^2=1(改题了

已知圆o:X^2+Y^2=1,点p是椭圆c:x^2/4+Y^2=1上一点,过点p作圆o的两条切线PA,PB,A,B为切点

令A(x1,y1),B(x2,y2),P(xo,yo)由切线公式可得直线PAx1x+y1y=1,直线PBx2x+y2y=1所以P满足x1xo+y1yo=1和x2xo+y2yo=1所以可得直线AB的方程

过直线x+y-2+√2=0上点p作圆x^2+y^2=1的两条切线,若两切线夹角为60‘,则点p坐标为?

x+y-2√2=0,x²+y²=1的圆心O(0,0),半径r=1设点P的坐标为(x,2√2-x)那么|OP|=√[x²+(2√2-x)²]=√(2x²

过抛物线y^2=6x的顶点作相互垂直的两条直线,交抛物线于A,B两点,求AB中点的轨迹方程

设A(6/k^2,6/k),B(6k^2,-6k)AB中点坐标为x=(6/k^2+6k^2)/2=3(1/k^2+k^2),y=(6/k-6k)/2=3(1/k-k)消取参数k,得AB中点的轨迹方程:

过抛物线y^2=6x的顶点作相互垂直的两条直线,交抛物线于A,B两点,求AB中点的轨迹方程,

设A(6/k^2,6/k),B(6k^2,-6k)AB中点坐标为x=(6/k^2+6k^2)/2=3(1/k^2+k^2),y=(6/k-6k)/2=3(1/k-k)消取参数k,得AB中点的轨迹方程:

设p是直线l2x+y=0上的任意一点,过点p作圆x^2|+y^2=9的两条切线pa,pb切点分别为ab,则直线ab恒过定

实做起来挺麻烦,这里给个思路.2x+y+9=0y=-2x-9设P(p,-2p-9),又设过P的圆的切线斜率为k,切线方程为y+2p+9=k(x-p)kx-y-kp-2p-9=0圆心(0,0)与其距离d

已知圆的半径为3cm.点P和圆心的距离为3^2(3根号2).经过这点P作圆O的两条切线.求两条切线的夹角以及切线长

设切点为A、B连OA、OB则OA⊥PAOA/PA=3/3√2=√2/2=sin∠APO∴∠APO=45°∴AP=OA=3同理∠BPO=45°∴∠APB=90°∴两条切线的夹角为90°切线长=3

过点P(2,4)作圆x^2+y^2=2的两条切线,切点A,B,求过A,B和P的圆的方程

AB为过P点的圆的切线的切点则PA垂直OAPB垂直OB三角形OPAOPB为直角三角形则PABO四点共圆圆心为OP中点Q(1,2)直径为OP(长为2倍根号5)则所求圆方程为(x-1)^2+(y-2)^2

已知圆c:x^2+y^2=r^2和圆外一点P(x0,y0),过P作圆的两条切线,切点为A,B,求过A,B两点的直线方程

x^2+y^2=r^2.(1)PA^2=PB^2=OP^2-r^2=(x0)^2+(y0)^2-r^2(x-x0)^2+(y-y0)^2=PA^2=(x0)^2+(y0)^2-r^2.(2)(1)-(

过点P(2,4)作圆x2+y2=2的两条切线切点为A,B求过AB和P的圆的方程和切线PA的长

这个应该能做.设原点为O点,有题目可得,线段op为新的圆的直径,所以圆点坐标为(1,2)半径为二分之一的op的长度也就是根号二十,所以圆的方程为(x-1)2+(y-2)=20pa的长度可以用勾股定理算

设P是直线l:2x+y+9=0上的任一点,过点P作圆x2+y2=9的两条切线PA、PB,切点分别为A、B,则直线AB恒过

因为P是直线l:2x+y+9=0上的任一点,所以设P(m,-2m-9),因为圆x2+y2=9的两条切线PA、PB,切点分别为A、B,所以OA⊥PA,OB⊥PB,则点A、B在以OP为直径的圆上,即AB是

过椭圆x216+y24=1上一点P作圆x2+y2=2的两条切线,切点为A,B,过A,B的直线与两坐标轴的交点为M,N,则

设A(x1,y1),B(x2,y2)则PA、PB的方程分别为x1x+y1y=2,x2x+y2y=2,而PA、PB交于P(x0,y0)即x1x0+y1y0=2,x2x0+y2y0=2,∴AB的直线方程为

过直线l:y=3x上一点P作圆C:(x-3)^2+(y+)^2=2的两条切线,若两条切线关于直线l 对称,则点P到圆心C

圆:(x-3)^2+(y+m)^2=2圆心坐标是(3,-m)二条切线关于y=3x对称,则说明圆心过此直线,即有-m=3*3=9,m=-9设P坐标是(a,3a),则有PC=根号[(a-3)^2+(3a+

一已知圆C:x^2+y^2=4,及点P(3,4),过P作圆C的两条切线,切点分别为A,B,求直线AB方程

设切点A(x1,y1),B(x2,y2)过A的切线为:x1*x+y1*y=4过B的切线为:x2*x+y2*y=4两条切线都经过P(3,4),所以3x1+4y1=4,3x2+4y2=4因此A(x1,y1

已知点P(3,6)和圆C:(x-1)^2+(y-2)^2=r^2,其中r是变量,过P作圆C的两条切线,切点分别为M,N,

这应该是高中数学吧,圆的方程已知,点已知,过点做圆的切线方程应该可以写出来啊,然后切点可以表示出来,切线根据三角形勾股定理表示出来,必定是一个含有R的一元二次方程,就最大值就好

设p为抛物线y^2=2px上的动点,过点p作圆C (x-2p)^2+y^2=p^2的两条切线,切点分别为A和B,求四边形

答:设PC=m,由AC=r=│p│,则PA=PB=√(m^2-p^2)S=2*1/2*PA*AC=│p│*√(m^2-p^2)p为常数,要使S达到最小,m应取最小值.设P(2pt^2,2pt)m^2=

已知圆O:x2+y2=1,点P在直线L:2x+y-3=0上,过点P作圆O的两条切线,A.B为两切点

:(1)由勾股定理得:|PO|2=R2+|PA|2,半径R=1,所以要求|PA|最小,就是求|PO|最短,而|PO|最短时,OP垂直于直线2x+y-3=0,所以最短|OP|=|0+0-3|4+1=35

高二数学题 已知圆O:x^2+y^2=1,点P在直线2x+y-3=0上,过P作圆O的两条切线,AB为两切点,求向量PA*

由于PA向量的模等于PB的模故而两向量成绩取决于他们的模以及夹角通过画图可知当P在(1,1)时两向量夹角为90°cos90°=0所以最小值为0

已知圆C:x2+y2=5(1)求过点P(-1,2)的圆的切线方程;(2)过点Q(3,5)作圆C的两条切线,求过两切点的直

解1由点P(-1,2)在圆C:x2+y2=5上由Kop=-2则切线的斜率k=1/2故切线方程为y-2=1/2(x+1)即为x-2y+5=02设过点Q(3,5)作圆C的两条切线的斜率为k则切线方程为y-