质点沿x轴运动,加速度随速度变化关系为a=kv

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:12:32
质点沿x轴运动,加速度随速度变化关系为a=kv
一质点沿x轴运动,加速度a=-2t,t=0时x0=3m,v0=1m/s.求(1)t时刻质点的速度和位置;(2)速度为零时

(1)t时刻质点的速度:v=vo-(2t/2)t=vo-t^2=1-t^2t时刻质点的位置:s=xo+∫vdt=xo+∫(vo-t^2)dt=xo+vot-1/3t^3=3+t-1/3t^3(2)v=

质点沿X轴运动,加速度随速度变化的关系为a=-kv,式中k为常数.当t=0时,x=x0,v=v0,求任意时刻质点的速度和

a=dv/dt=-kv→dv=adt=-kvdt分离变量dv/v=-kdt两边积分∫(v0→v)dv/v=∫(0→t)-kdtln(v/v0)=-kt→v=v0*exp(-k*t)v=dx/dt=v0

质点沿x轴运动,加速度和位置的关系为a=2+6*x*x.已知质点在x=0时的速度是10m/s.

a=v'=x''=6x^2+2撇表示对时间微分x''=dx'/dt=(dx'/dx)*(dx/dt)=v(dv/dx)=6x^2+2vdv=(6x^2+2)dx积分:v^2/2=2x^3+2x+Cx=

一质点沿x轴运动,其加速度a与位置坐标x的关系为a=3+9x².如果质点在原点处的速度为零,试求其在任意位置处

a=dv/dt=dv/dx*dx/dt=dv/dx*v=3+9x^2vdv=(3+9x^2)dxv^2=6x+6x^3+c因为x=0v=0c=0v^2=6x+6x^3v=根号6x+6x^3

一质点沿x轴运动,其加速度a与位置坐标x的关系为a=2+6x2(a等于2加六X的平方),如果质点在原点的速度为零

1.dv/dt=2+6x22.dx/dt=v把第二个式子写成dt=dx/v代入到一式,得到:vdv=(2+6x2)dx然后积分,懒得算了你要是还不会就看看书吧

质点沿x轴运动,其加速度a=2t2(SI),已知t=0时,质点位于x0=4m,其速度v0=3m/s,求其运动方程.

a=2*t^2因为 a=dV/dt所以 dV/dt=2*t^2dV=2*t^2*dt两边积分,得 V=(2*t^3/3)+C1 ,C1是积分常数由初始条件:t=0时,V=V0=3m/s,得 C1=3即

大学物理题一道解法一质点沿x轴运动,其加速度a与位置坐标x的关系为a=2+6x^2 如果质点在原点处的速度为零,试求其在

由a=dv/dt=(dv/dx)(dx/dt)=v(dv/dx)=2+6x^2v*dv=(2+6x^2)dx对上式积分(对v积分的下限为x=0时刻的速度,上限为任意位置处的速度v);对x积分的下限为0

质点沿X轴运动,其加速度和位置关系为A=2+6X^2,质点在X=0时速度为10米每秒,求质点在任何坐标处的速度值

a=2+6x^2dv/dx*dx/dt=2+6x^2vdv=(2+6x^2)dx∫vdv=∫(2+6x^2)dxv^2=4x+4x^3+c(1)式x=0,v=10代入得c=100(1)式开方得v=2根

一质点自x轴原点出发,沿正方向以加速度a加速,经过t0时间速度变为v0,接着以-a加速度运动,当速度变为-v0/2时,变

速度有正负,表明速度方向有变化.为往返运动.A错!当速度小到非常接近零时,可以认为已静止.B错!质点离开原点的最大距离为2t0时刻,大小为voto.D正确!以开始运动方向为正.自2to之后可知下方面积

一质点自原点开始沿一抛物线2y=x^2 运动 它在X轴上的分速度为一常量 4.0M/S 求质点在x=2M时的速度加速度

一质点自原点开始沿一抛物线2y=x²运动它在X轴上的分速度为一常量4.0m/s求质点在x=2m时的速度加速度质点运动轨迹为抛物线y=(1/2)x²,已知水平分速度Vx=dx/dt=

一质点沿X轴作往复直线运动,其运动方程为X=sin(wt)(w为常数,t为时间),求质点在任何时刻的速度和加速度。

这个怕是只能求导了,速度一阶导,加速度二阶导,求起来也不太麻烦.采纳一下啦.再问:�ܰѲ���дһ��������д��ϸһ�㣬�������á�д�ã����ϲ��ɣ�лл�ˡ�再答:sin'wt=

(1)质点沿x轴作直线运动,运动方程为x=t^3-2t^2+t.①质点速度v与时间t关系②质点加速度a与时间t关系.(2

1S=t^3-2t^2+tv与时间t的关系即S的微分.即:v=3t^2-4t+1a与时间t的关系即V的积分.即:v=6t-42(1)a=1-t^2+t即v微分,用[积分上限无限大,下限是0]积分积回去

质点沿x轴运动,v=1+3t²(SI).t=0质点位于原点.求加速度a,质点的运动方程

1、a=dv/dt=6t(m/s^2);2、s=Svdt=S(1+3t^2)dt=(t+t^3)+C,t=0时,s=0,代入得:C=0,所以:s=t+t^3(m).

一质点自x轴原点O出发,沿正方向以加速度a运动.经过t0时间速度变为v0,接着以-a加速度运动,当速度变为- v02时,

本题目中出现速度为负值,即表示速度方向有与启示正方向不同的时候,要达到这个状态,必然有速度为0的一个特殊临界值,而速度为0是,无论加速度的大小与方向如何,该点时,该物体处于静止状态,只是这只是一个特殊

平面运动加速度(C)做变加速度曲线运动的质点、下列何者一定会改变?(A)速度大小(B)法线加速度大小(C)法线加速度方向

做匀速圆周运动的物体其速度大小是不变的(A)法向加速度大小不变都为V^2/r(B)切向加速度大小为0(D)切向加速度的方向时随时间变化的,即曲线的切线方向(C)所以此题选C

一质点沿x轴运动,其加速度a与位置坐标x的关系为a=2+6x^2,如果质点在原点处的速度为零,试求其在任意位置处的速度.

答案错了吧a=dv/dt=(dv/dx)*(dx/dt)dx/dt=vv*dv=(2+6x^2)dx初值是速度和x都是0两边求积就可以了(1/2)v^2=2x+2x^3再化简一下玖行了