P(X0,Y0)是双曲线X^2/a^2-Y^2/b^2=1上任意一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:19:12
P(X0,Y0)是双曲线X^2/a^2-Y^2/b^2=1上任意一点
P(x0,y0)是双曲线x^2/a2-y^2/b2=1右支上的一点,则P到右焦点F的距离是多少,求详解

这题如果用焦半径求解可以看一眼出结果,但想必你们没学,因此下以圆锥曲线第一定义推导已知P到点(-c,0)与(c,0)距离差为定值2a根[(x+c﹚²+y²]-根[﹙x-c﹚

过y^2=2px(x>0)上一点P(x0,y0)(y0>0)作两直线分别交抛物线于A(X1,Y1)B(X2,Y2)

1)焦点F(p/2,0),y0=p/2时x0=p/8,由抛物线定义,|PF|=x0+p/2=5p/8.2)当PA、PB斜率存在且倾斜角互补时,PAx=m(y-y0)+y0^2/(2p),PB:x=-m

点A(x0,y0)在双曲线x

a=2.c=6,∴右焦点F(6,0)把A(x0,y0)代入双曲线x24−y232=1,得y02=8x02-32,∴|AF|=(x0−6)2+8x02−32=2x0∴2x0=3(x0−a2c)⇒x0=2

求大于2的质数P,使得抛物线y=(x-1/p)(x-p/2)上有点(x0,y0)满足x0为正整数,y0为质数的平方.

令y=q^2整理得(px-1)(2x-p)=2pq^2----(#)∴p|(px-1)(2x-p),又(p,px-1)=1∴p|2x-p,p|x,令x=kp(k∈Z*)代入(#),(kp^2-1)(2

已知P(x0,y0)是椭圆x^2/2+y^2=1上的任意一点,求点M(0,1)到P点的最大距离

∵x^2/2+y^2=1∴x^2=2-2y^2∵MP=根号下[x^2+(y-1)^2]∴把x^2=2-2y^2带入得:MP=根号下[-(y^2+2y-3)]=根号下[-(y+1)^2+4]∵-1≤y≤

P(x0,y0)是圆x2+(y-1)2=1上一点,求x0+y0+c≥0中c的范围

x²+(y-1)²=1令x=cosa则(y-1)²=1-cos²a=sin²ay-1=sinay=sina+1所以x+y=sina+cosa+1=√2

已知双曲线x^2/a^2-y^2/b^2=1右支上的一点P(x0,y0)到左焦点与到右焦点的距离之差为8,且到两渐近线的

由题意知2a=8即a=4点(x0,y0)到两渐近线的距离分别为d1=|bx0-4y0|/√b^2+4^2d2=|-bx0-4y0|√b^2+4^2∵d1d2=16/5∴b^2x0^2-16y0^2/b

可微函数z=f(x,y)在点p0(x0,y0)取极值是fx'(x0,y0)=fy'(x0,y0)=0的什么条件?

充分条件.取极值可以推出偏导数为0;反之,偏导数为0推不出取极值.

“fx(x0,y0),fy(x0,y0)都存在”是“f(x,y)在(x0,y0)点沿任意方向的导数存在”的什么条件?

“fx(x0,y0),fy(x0,y0)都存在”是“f(x,y)在(x0,y0)点沿任意方向的导数存在”的必要条件,不是充分条件.

偏导数fx(x0,y0)与fy(x0,y0)存在是函数f(x,y)在点(x0,y0)连续的什么条件?

偏导数存在且连续是函数连续的充分非必要条件偏导数存在是函数连续的非充分非必要条件

已知点P在直线x+2y-1=0上,点Q在直线x+2y+3=0上,P,Q中点为M(x0,y0),且y0>x0+2,求y0/

令p(x1,y1)、Q(x2,y2)则x0=(x1+x2)/2,y0=(y1+y2)/2由y0>x0+2,(y1+y2)/2>(x1+x2)/2+2;令y1+y2=t,则t>-(1+t)+2得t>2/

点P在直线X+3Y-1=0上,点Q在直线X+3Y+3=0上,PQ的中点M(X0,Y0) 且 Y0>X0+2 则Y0/X0

由x+3y-1=0,得:x=1-3y,∴点P的坐标可设为(1-3a,a).由x+3y+3=0,得:x=-3-3y,∴点Q的坐标可设为(-3-3b,b).由中点坐标公式,得:点M的坐标为(-1-3a/2

已知抛物线解析式为Y=2X平方+3MX+2M,其顶点坐标为(X0,Y0),求X0与Y0满足的关系式是

该抛物线为一元二次方程y=ax平方+bx+c的形式,其顶点坐标公式为(-b/2a,(4ac-b平方)/4a),即X0=-3m/4,所以m=-4X0/3,Y0=(16m-9m平方)/8,将m=-4X0/

椭圆切线方程过椭圆 x^2/a^2+y^2/b^2=1 上任一点 P(x0,y0)的切线方程是x0*x/a^2+y0*y

对椭圆方程两边求导,得2x/a^2+2yy'/b^2=0解得y‘=-b^2x0/a^2y0,即切线斜率为-b^2x0/a^2y0再用点斜式y-y0=k(x-x0),代入得x0*x/a^2+y0*y/b

设曲线C;X^2=2Y上的点P(X0,Y0),X0不等于0,过P作曲线C的切线L

1求导y=(x^2)/2y'=x=2所以切线L的斜率为2而点P(2,2)用点斜式求得L:2x-y-2=02L:2x-y-2=0与y轴交予点A(0,-2)曲线c:x^2=2y的焦点为F(0,1/2)可以

“P(x0,y0)点”中,0是指当x,y等于零时,

0是X的下标表示(X,Y)点不参于运算也可以表示成(X1,Y1)等等是一样的

设P(X0,Y0)是曲线Y=3-X^2上的一点 写出曲线在点P处的切线方程

现对这个曲线进行求导,得到:y'=-(2x)=-2x根据题意,这该切线的斜率k=y'=-2x0.所以切线方程为:y-y0=-2x0(x-x0).化简即得.

设P(X0,Y0)是曲线Y=3-X^2上的 一点 写出曲线在点P处的切线方程

中考题的话..Y0=3-x^2,故P(X0,3-x^2)设直线方程为y=kx+b直线与原曲线方程联立,令判别式为0即可得出k与b的关系再代入P坐标即可求解.如果上了高中就可以按楼上的导数求解了,导数就