p,q是ab,ac上的动点bp=cq,pn垂直于bc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:47:35
最好有个图,因为图的画法不同证明过程稍有不同.结论证明只要是利用互补或互余来证明,那个边相等没太大用
见下图:因为CE垂直BA,所以<QCA+<CAB=90’因为BD垂直CA,所以<ABP+<CAB=90’因此 <QCA=<ABP这两个相等角的两条边QC=AB,CA=BP根据相等三角形的定理
根据全等1.因为∠BEC=∠CDQ=90∠EQB=∠DQC所以∠ABP=∠ACQ在三角形ABP和QCA中AB=QCAC=BP∠ABP=∠ACQ两个全等所以AQ=AP2.因为∠AQC=∠BAP(全等)∠
1)证明:CQ=AC-AQ,AP=AB-BP,∵AC=AB,∴CQ=AP,△CDQ和△ADP中,CQ=AP、∠C=∠DAP=45°、CD=AD,△CDQ≌△ADP,∠CQD=∠APD,四边形APDQ内
(1)BD,CE分别是三角形ABC的边AC和AB上的高所以角ABD+角BAC=90度,角ACE+角BAC=90度于是角ABD=角ACE又BP=CA,BA=CQ所以三角形ABP全等于三角形QCA所以AP
1、证明:∵BD⊥AC,CE⊥AB∴∠ADB=∠AEC=90∴∠ABP+∠BAC=180-∠ADB=90,∠ACQ+∠BAC=180-∠AEC=90∴∠ABP+∠BAC=∠ACQ+∠BAC∴∠ABP=
作AD⊥BC于点D∵AB=AC=10.BC=16根据勾股定理AD=6∴△ABP的面积=1/2×x×6=3x∵PQ‖AC,∴BQ/BA=x/16∴△APQ的面积=3x(16-x)/16∴y=-3x^2/
(1)证明:连接AD∵△ABC是等腰直角三角形,D是BC的中点∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,又∵BP=AQ,∴△BPD≌△AQD(SAS),∴PD=QD,∠ADQ=∠BDP,∵∠BD
1、由三角形相似求得:QP=(5/8)x 由余弦定理求得:cosC=4/5 ,sinC就等于 (3/5)&nb
1,连接PC,已知S△PBC=1/2×BC×5=1/2×PB×QC,即,xy=8×5,y=40/x(5〈x〈√89)2,题意不明
解(1)证:∵D是BC的中点.△ABC是等腰直角三角形∴∠PBD=∠QADAD=BD又BP=AQ∴△PDB≌△QAD(SAS)∴∠PDB=∠ADQQD=PD又∠ADB=90°∴∠PDQ=90°∴△PD
证明:△ABP≌△QCA,所以∠QAC=∠APB,在△ADP中∠ADP=90度,∠PAC=90-∠BPA,∠QAC=∠BPA(已证)∠QAP=∠QAC∠PAC=∠QAC90-∠BPA=90,所以AP垂
1、因为角BAC+角ABD=90度=角BAC+角ACE,所以角ABD=角ACE对三角形BAP和三角形CQA,两边夹角相等,所以两三角形全等,得AP=AQ2、因为三角形BAP和三角形CQA全等,角QAC
证明:∵AB=AC,∠BAC=90°,点D是BC的中点,∴AD⊥BC,∠ADB=∠ADC=90°,∠BAD=∠CAD=45°,AD=BD=AD∴⊿AQD≌⊿BPD∠BDP=∠ADQ∵∠BDP+∠PDA
证明:1、在△AEC和△ADB中,∠BAC是公共角,△AEC和△ADB中有一个角是直角(已知),所以△AEC∽△ADB,所以∠ABD=∠ACE在△ABP和△QCA中,∠ABD=∠ACE(已证),BP=
∵∠BPR=∠ABC-∠ARQ=60º-30º=30º∠QPC=∠BPR=30º∴△PQC为直角三角形;∵sin∠QPC=QC/PC;sin30º=Q
1,连接ADBP=AQ ∠QAD=∠B=45 AD=BD △BPD≌△AQD PD=QD∠PDB=∠QDA ∠QDP=∠AQD
(1)连接A、D,AD=BD=BC,∠DAC=45º,∠PDB+∠ADP=90º△DAQ与△DBP中AD=BD,∠DAQ=∠DBP,AQ=BP△DAQ≌△DBP∴DQ=DP,∠QD