p=1 2(a b c),求证面积为s=根号p(p-a)(p-b)(p-c)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:00:04
先等一下,我在证明.再答:如图,连接三角形顶点与内切圆圆心,将三角形划分为三个小三角形。内切圆与三边相切,所以内切圆半径垂直于三边,所以三个小三角形面积分别为:ar/2、br/2、cr/2,所以三角形
∵PA⊥平面ABC∴PA⊥BC又BC⊥AB∴BC⊥平面PAB∴BC⊥PB
第一题:并不困难的一道题,最容易的一个解法是建系解析,利用直线的斜率(正切)和向量求解即可.第二题:多说一些吧:第一步:不妨设a>b>c,a=b+m=c+m+n,m,n>0;第二步:a^2+b^2+c
在三角形ABC中作PE⊥AB于点E.PF⊥BC于点F则四边形BEPF是矩形∴PE=BF∵∠BAP=30°∴PE=1/2AP∵AB=BC=AP∴PE=1/2BC=BF∴PF垂直平分BC∴BP=CP
AP=AP'=PP'=2P'C=PB=4PC=2√3∴∠P'PC=90°∠PCP'=30°由勾股定理得到AP^2+PC^2=P'C^2∠P'PC=90°AP=1/2PB所以AP对的角PCP'就是30°
1.连接po因为o是外心所以ao=bo=co取AB边中点d连接odpd因为oa=ob所以oa垂直ab同理pd垂直ab所以ab垂直平面pdo所以po垂直于ab2同理po垂直bc因为abbc交于b点所以p
只OP垂直面ABC不能证明面PAC垂直面ABC啊回答:\x0d过一条垂线上的任意面垂直那个面,面PBC是垂线上的一个面,就垂直那个面了,我用的反证法,有个定理给你说,三角形斜边的中点到三顶点的距离相等
过P作PO垂直平面ABC于O,则PA,PB,PC在平面ABC上的射影分别为OA,OB,OC,因为PA=PB=PC,所以OA=OB=OC(也可由直角三角形PAO,PBO,PCO全等得到),即O为三角形A
作PD,PE,PF分别垂直AB,BC,AC于D,E,F,连接CD,AE,BF,;由于PAPBPC两两垂直,故可知PA⊥平面PBC;而PE⊥BC,由三垂线定理得AE⊥BC;同理,BF⊥AC;CD⊥AB;
PA*PB=PB*PC∴PA.PB-PB.PC=0∴PB.(PA-PC)=0∴PB.CA=0∴PB⊥CA同理PA⊥CBPC⊥AB∴P为三角形ABC的垂心
证明:取AC,BC的中点D,E,连结PD,PE,DE.显然DE为△ABC的中位线,∴DE‖AB.∵AB⊥BC,∴DE⊥BC.∵PB=PC,E为BC中点,∴PE⊥BC,∴BC⊥平面PDE,∴BC⊥PD.
延长CP交AB于D.连接BP.因为PC=BC==》角CPB=角CBP于是角CPB90度==》角APB>角DPB>90度.所以在三角形ABP中,角APB>角ABP===》AB>AP.
过A做AD垂直与BCAP^2=AD^2+DP^2AB=AD^2+BD^2AP^2-AB^2=AD^2+DP^2-AD^2-BD^2=DP^2-BD^2=(DP+BD)(DP-BD)=BP*CP(BD=
由原式可以得出:GA+GB+GC=0向量,又GA=PA-PG,GB=PB-PG,GC=PC-PG,三式加得:GA+GB+GC=PA+PB+PC-3PG,即为:PG=1/3(PA+PB+PC).以上字母
将整个图形以定点B旋转60度,使BA转到BC位置,P的新位置为P',C的新位置为C'.P'C'=PC=5,P'C=PA=4,P'B=PB=3.连接PP'明显三角形PP'B为等边三角形(因为角PBP'=
(1)内切圆圆心为O,连AO,BO,CO则,SABC=SABO+SACO+SBCO=cr/2+br/2+ar/2=(a+b+c)r/2=pr所以,r=S/p(2)AB,AC,BC上的内切圆切点分别是D
延长AP,交BC于M,AC+MC>AM=AP+PM,BM+MP>PBAC+MC+BM+MP>AP+BP+PMPA+PB
反证法过B作AP垂线BO,过c作AP垂线cO',O,O'均在AP上假设O,与O'不重合则有,在三角形ABP中,BO是AP边的高,AB=BP,所以,AO=PO同理,三角形cBP中,有AO'=PO'所以,
c/sinC=2R所以sinC=c/(2R)而S=1/2absinC=abc/4R
过A作AF⊥BC于F.在Rt△ABF中,AF2=AB2-BF2;在Rt△APF中,AF2=AP2-FP2;∴AB2-BF2=AP2-FP2;即AB2=AP2+BF2-FP2=AP2+(BF+FP)(B