p=2acosθ面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:14:29
p=2acosθ面积
定积分求面积的题~求两圆r≤√3*a及r≤2acosΘ公共部分面积...

做这种题要先画图,你自己画,r≤√3*a是以原点为圆心,√3*a为半径的圆,r≤2acosΘ是一个以(a,0)为圆心,a为半径的圆.本题需要先求出两圆的交点,即方程√3*a=2acosΘ,得cosθ=

在极坐标下,求曲线r=2acos θ,(a>0)所围成的图形的面积

=2acosθ,两边同时乘以r得到r平方=2a*rcosθ化简得到x平方+y平方=2ay为一个圆点在(0,a),半径为a的圆所以面积是π乘以a平方.

x^1/2 + y^1/2 =a^1/2 ,设x=acos^4θ 化为参数方程

x^1/2+y^1/2=a^1/2主要是表达y:y=(a^1/2-x^1/2)^2=a(1-(cosΘ)^2)^2=a(sinΘ)^4.则x=a(cosθ)^4,y=a(sinΘ)^4.(a≥0).

高数 极坐标问题能不能帮我分析一下极坐标下r=2acosθ代表的圆的圆心及半径求得的过程,还有r=2a(2+2acosθ

直角坐标与极坐标的关系是x=rcosθ,y=rsinθ,所以r=2acosθ的直角坐标方程是x^2+y^2=2ax,圆的圆心是(a,0),半径是ar=2a(2+2acosθ)的直角坐标方程复杂一点:x

求曲线所围成图形的面积 ρ=2acosθ,用定积分算

公式太多,直接弄成图片了,还不懂的话就追问吧再问:有没有更简单一点的方法啊,考试时也要这样推来推去的麽,还是说无论什么情况,用定积分算圆的面积时,θ都是取(-π/2→π/2)?再答:因为你弄不清楚范围

求曲线ρ=2acosθ所围成图形的面积 用定积分

cosθ=ρ/2a>=0所以θ范围是(-π/2,π/2)S=∫1/2*ρ^2dθ=∫2a^2cosθdθ=a^2∫(1+cos2θ)dθ=a^2+1/2a^2sin2θ积分范围是(-π/2,π/2)故

二倍角的三角函数sin²asin²p+cos²acos²p=(1/2)(1+co

把左式的平方项化成二倍角:sin^2a=1/2(1-cos2a)sin^2p=1/2(1-cos2p);cos^2a=1/2(1+cos2a)cos^2p=1/2(1+cos2p)左式=1/4[(1-

从极点做圆p=2acosθ,求各个弦的中点的轨迹方程

设某一条弦中点坐标为(ρ,θ),弦的一端点为极点(0,0),另一端点为(ρo,θo),显然有(0+ρo)/2=ρ,θo=θ,即ρo=2ρ,θo=θ,而点(ρo,θo)在圆ρ=2acosθ上,代入得圆2

已知函数y=acos(2x+π3

∵x∈[0,π2],∴2x+π3∈[π3,4π3],∴-1≤cos(2x+π3)≤12,当a>0时,-a≤acos(2x+π3)≤12a,∵ymax=4,∴12a+3=4,∴a=2;当a<0时,12a

用格林公式求星型线 x=acos^3t,y=asin^3t的面积,

用格林公式求星型线x=acos³t,y=asin³t的面积.S=(1/2)∮xdy-ydx=[0,2π](1/2)∫(3a²cos⁴tsin²t+3

高数,求极坐标下曲线所围图形的面积 r=2acosθ,θ=0,θ=π/4

分析:先将原极坐标方程两边同乘以r后化成直角坐标方程,再利用直角坐标方程进行求解面积即可.解法:r²=2arcosθ,化为x²+y²=2ax,即:x²-2ax+

计算x=acos^(3)θ y=asin^(3)θ所围成的面积S

问题问得很模糊,下面θ在[0,2*pi]内来计算:令x=y==>θ1=pi/4,θ2=5*pi/4;==>[pi/4,5*pi/4]内的面积s(t)=[-1/3*sint^2*cost-2/3*cos

求椭圆x=acosθ,y=asinθ所围成图形的面积A

.应该是:圆x=acosθ,y=asinθ所围成图形的面积A吧.圆的方程是x^2+y^2=a^2半径是a,则有面积A=πa^2

求由x=acos^2t,y=asin^2t所围成的图形的面积

x=a(cost)^2y=a(sint)^2a>0x+y=a交x轴于A,交y轴于Bx=0,y=aB(0,a)y=0,x=aA(a,0)Saob=(1/2)OA*OB=(1/2)a^2

求极坐标面积求曲线r=acosθ与r=a(cosθ +sinθ )所围图形公共部分的面积(a>0)不光要求答案要求给出解

将极坐标转换成直角坐标后就很容易知道这是两条怎样的曲线.转换公式是: r=√(x²+y²), cosθ =x/√(x&sup2

函数r=2acosθ,其中a>0.函数图象是?对这个图像求面积,请写出积分式.

函数r=2acosθ的图形,可以通过极坐标和直角坐标的关系,得到rr=r2acosθ,即xx+yy=2ax,即(x-a)^2+y^2=a^2,由此可知图形如下,见插图(应该是圆):根据对称性,该图面积

曲线ρ=2acosθ所围成图形的面积 用定积分 为什么积分范围是(-π/2,π/2)而不是(0,2π)?

曲线 ρ=2acosθ 形成的圆形在极轴右侧,即从 (-π/2,π/2) 的区域

极坐标方程r=2acosθ(a>0)的图形

因为当θ超过π/2的时候2acosθ是一个负值(假定a>0)那么负的长度就应该反向画出!、比如(π,-2a),-2a的落点在右边一个圆的最右端那个点!你的错误在于:把直角坐标和极坐标搞混淆了,认为(π

ρ=2acos(θ-π/3)转换成平面直角坐标系方程

两边乘ρρ²=2aρ(cosθcosπ/3+sinθsinπ/3)ρ²=aρcosθ+aρsinθ*√3x²+y²=ax+√3ay

求椭圆x=acosθ,y=asinθ所围图形的面积.

按格林公式,取P(x,y)=-y,Q(x,y)=x,则封闭曲线L所围图形的面积A=1/2*∫L-ydx+xdy=1/2*∫(上限2π下限0)(abcos^2θ+absin^2θ)dθ=(1/2)ab∫