p=2acos的直坐标转化
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:37:23
=2acosθ,两边同时乘以r得到r平方=2a*rcosθ化简得到x平方+y平方=2ay为一个圆点在(0,a),半径为a的圆所以面积是π乘以a平方.
p=√(x^2+y^2)√(x^2+y^2)=2x^2+y^2=4
半径为2a的圆,所以你的问题答案是4(pai)a方建议你看这个~
直角坐标与极坐标的关系是x=rcosθ,y=rsinθ,所以r=2acosθ的直角坐标方程是x^2+y^2=2ax,圆的圆心是(a,0),半径是ar=2a(2+2acosθ)的直角坐标方程复杂一点:x
你的题目中有一个问题,没有指明哪个是参数,另外,感觉你应该核对一下题目,x,y的表达式估计不对,请核对后追问.如果题目无误,θ是参数则x-y=acosθ,y=asinθ∴(x-y)²+y
cosθ=ρ/2a>=0所以θ范围是(-π/2,π/2)S=∫1/2*ρ^2dθ=∫2a^2cosθdθ=a^2∫(1+cos2θ)dθ=a^2+1/2a^2sin2θ积分范围是(-π/2,π/2)故
ρ=2acosα是圆心为(a,0),半径为a的圆画出图从图中得α取值-π/2到π/2再问:有没其他做法...画图花好多时间...我还有其他题目不懂画图...定积分噢再答:极坐标的题目的常用的图形不多,
把左式的平方项化成二倍角:sin^2a=1/2(1-cos2a)sin^2p=1/2(1-cos2p);cos^2a=1/2(1+cos2a)cos^2p=1/2(1+cos2p)左式=1/4[(1-
(dy/dt)/(dx/dt)为一导,(dy/dt)/(dx/dt)对t的导数比上(dx/dt)为二导.再问:谁不会方法呀!我求过程呀!再答:呵呵!方法会,怎么能不会过程呢?你开玩笑吧!过程就是通过方
设某一条弦中点坐标为(ρ,θ),弦的一端点为极点(0,0),另一端点为(ρo,θo),显然有(0+ρo)/2=ρ,θo=θ,即ρo=2ρ,θo=θ,而点(ρo,θo)在圆ρ=2acosθ上,代入得圆2
p=2sinθ→p²=2psinθ化为直角坐标系方程:x²+y²=2y→x²+(y-1)²=1所以圆心坐标为(0,1)对应的极坐标为(1,π/2)【希
/>根据点的极坐标化为直角坐标的公式:ρ²=x²+y²,ρcosθ=x,ρsinθ=y.∵p=2/(1-cosa)∴p(1-cosa)=2∴p=2+pcosa即√[x
分析:先将原极坐标方程两边同乘以r后化成直角坐标方程,再利用直角坐标方程进行求解面积即可.解法:r²=2arcosθ,化为x²+y²=2ax,即:x²-2ax+
w=2π/T=1Acos(x+π/2)=-Asinx把P点代进去得A=1.所以原函数就是f(x)=-sinx所以sina=4/5sinB=5/13,又因为这2个角都属于(0,π/2)所以cosa=3/
将原式p+6cotQ/sinQ=0化为psinQtanQ=-6再来考虑直角坐标x、y与极坐标pQ之间的转换公式x=pcosQy=psinQ所以y/x=tanQ这样,将x=pcosQ、y/x=tanQ代
令x=PcosQ,y=PsinQ(P相当于极坐标标准式中的r,也就是离极点的距离,Q相当于θ,为射线与x轴的夹角)则原式化为:x-2y=12
p=2/(1-Sin&)p-psin&=2p=(xx+yy)^0.5sin&=y/p(xx+yy)^0.5-y=2xx+yy=yy+4y+4xx=4y+4
因为当θ超过π/2的时候2acosθ是一个负值(假定a>0)那么负的长度就应该反向画出!、比如(π,-2a),-2a的落点在右边一个圆的最右端那个点!你的错误在于:把直角坐标和极坐标搞混淆了,认为(π
两边同时乘以P