pa pb分别与圆o相切于点a b 若∠P=60° PA=6 求○O半径的r
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:13:19
(1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等; OC=OA, OD=OD;三角
延长AC.过点G作AB的平行线,交AC延长线于点H.因为GH//AB 所以△CGH相似于等腰直角△ACB,△DGH相似于△ADF因为AC=BC=6 ∠ACB=90度 D为
分析:由切线长定理知,AE=CE,FB=CF,PA=PB=2,然后根据△PEF的周长公式即可求出其结果.\x0d∵PA、PB分别与⊙O相切于点A、B,\x0d⊙O的切线EF分别交PA、PB于点E、F,
弧AB=πR/3=2πR/6则弧AB所对的圆心角O=60°连接OD,(必经过O`),连接O`C则∠C0O`=30°OC=sin30*OO`=O`D=r(圆O`的半径)OO`=2r又OO`+O`D=R∴
多少年没有计算了,刚才看了下,给你出计算过程,结果你计算:1)设半径A0=X,DB=Y2)则根据直角三角形A²+B²=C²,列出两个计算公式,AC=6AB=10CB=8X
1.证明:连接OC则OA=OC,OC⊥CD∴∠OAC=∠OCA∵AC平分∠DAO∴∠OCA=∠OAC=∠CAD∴AD‖OC∴AD⊥CD2.连接BC∵∠DAC=30°∴∠BAC=30°∵AB是直径∴∠A
(1)连接OD.设⊙O的半径为r.∵BC切⊙O于点D,∴OD⊥BC.∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.∴ODAC=OBAB,即10r=6(10-r).解得r=154.故答案是:154
将几何图形坐标化以C为原点ACBC为xy轴建立坐标系易得圆O半径是3所以D(3,0)E(0,3)A(6,0)B(0,6)圆方程(x-3)^2+(y-3)^2=9AB方程为y=-x+6解得F点坐标为(3
连接OD因为AC与圆O相切所以OD⊥AC因为∠C=90°,AC⊥BC,OA=OB所以OD//BC,OD=BC/2=3所以OF=OD=3,∠ODF=∠BGF,∠DOF=∠GBF因为∠OFD=∠BFG所以
是OP吧?连接OP,OD,∵PD=PB,OB=OD,OP是公共边∴△PDO≌△PBO∴∠POD=∠POB=∠BOD/2∵∠A=∠BOD/2∴∠A=∠POB∴AD‖OP
再问:这是错的。。。再答:朋友,你认为哪里错了呢,有什么根据呢?最好能指出来。我已对这个解答进行了全面的检查,是地毯式的、逐字逐句的检查,经检查,未发现有差错。不过也许百密也有一疏,如果你真的发现有错
由弧长公式,得,弧AB:nπR/180=πR/3解得n=60即∠AOB=60°连OD,O'C,则OD经过O'点因为OC,OB为切线所以∠COD=∠AOB/2=30°在直角三角形OCO'中,OO'=2C
设AE为X所以AD=X=AECD=6-X=CFAB=5-X=9-(6-X)=BF由于切线长定理得到9-(6-X)=5-X解得X=1所以AD=1=AECD=5=CFAB=4=9-(6-1)=BF
郭敦顒回答:(1)∵AB是圆O的直径,PA、PC分别与圆O相切于点A、C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E,连OC∴Rt⊿OPA≌Rt⊿OPC,∴∠OPA=∠OPC,∵∠OPC
证明:作DE平行于BC,交AC于E点,连接OE、AO、OD∵D为圆O切点,∴OD⊥AB∵△ABC为等腰三角形,DE‖BC∴AD=AE又∵O为BC中点,∴∠DAO=∠OAE∵AD=AE,AO=AO,∠D
(1)要使圆O与AC边也相切,应增加条件AB=AC(2)因为AB=AC,即:△ABC为等腰△,又AO是三角形ABC的中线,故AO也是顶角∠BAC的平分线(等腰△三线合一).即圆心O在顶角∠BAC的平分
OD=3即圆的半径,则,OF=3BF=3根号2-3接着求出BF/FAAD/DC=1接着利用截线DFG与三角形ABC的梅涅劳斯定理,求出CB/BG接着就易求CG了不知道这是什么程度的题目,用了梅涅劳斯定
弧AOB是圆面积1/3而PD平分弧AOB结果:1/6乘以3.14第二题看不清
(1)连接OD,OE,∵等腰Rt△ABC的直角边AB、AC分别与圆O相切于点E、D,∴∠A=∠ADO=∠AEO=90°,∴四边形AEOD是矩形,∴AD=AE,∴四边形AEOD是正方形,∴OD=AD=3
链接ODOE四边形ODCE是正方形MO=OE角OEM等于角F又有一个对顶角,∠AFM与∠AMF之后知道EB知道∠B=60°则圆的半径OE=2知道∠CAB=30°,可以求出∠F之后用三角函数求出S三角形