pa pb是圆o的两条切线,切点分别为A.B,若直径AC等于12

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:44:13
pa pb是圆o的两条切线,切点分别为A.B,若直径AC等于12
四点共圆的运用PA,PB 是圆O的两条切线,A,B为切点.D是弧AB上一点,过D点作圆O的切线分别交PA,PB于E,F,

PQ平分线段EFsinEPQ/sinFPQ=sinPEF/sinPFE,即sinAPQ/sinBPQ=sinPEF/sinPFE(把角的名字换一下而已)APBO构成一个关于对角线OP对称的四边形,Q在

如图,PA、PB是圆O的两条切线,切点分别是A、B,直线OP交圆O于点D、E,交AB于点C,已知PA=4,PD=2,求O

图呢据描述可知:三角形DPA和APE相似,可得PD/PA=PA/PE即2/4=4/PE解得PE=8DE=PE-PD=6(直径)则半径OA=3方法二:PA维圆O切线,可知,OA垂直于PA又知OA=OD根

直线PA,PB是圆O的两条切线,A、B分别是切点,且角APB=120 度,圆O的半径是4厘米,求切线长AP

角APB=120则角AOB=180-120=60连接OPOP平分角APB和AOB三角形AOP为直角三角形60度角所对边为4所以切线长为3分之4倍根号3

直线PA、PB是圆O的两条切线,A、B分别是切点,且角APB=120 度,圆O的半径是4厘米,

连接BC.在四边形OAPB中,角APB=120度,角A和角B是90度,所以角AOB是60度.又因为角ACB=1/2*角AOB=30度三角形ABC中AC是圆直径,所以角ABC=90度.因此角BAC=18

直线pa pb是圆o的两条切线a b 分别为切点且角apb等于120度圆o的半径为4厘米求切线长pa

如图,过圆心O连接op.oa,因为op是角apb的平分线,所以角opa等于60度,所以在直角三角形opa中,由勾股定理求出pa长为三分之四倍根号三. 

直线PA,PB是圆O的两条切线,A,B分别为切点,且角APB=120度,圆O的半径为4cm,求切线长PA.

切与AB说明角OAP和角OBP是直角.连接OP因为AO=OB,OP=OP和前面两个角相等,证明两个三角形全等,说明角OPA=角OPB而两角相加等于120度,所以两个角都是六十度,所以AO是根号三倍的A

如图,PA,PB是圆O的两条切线,A,B是切点,AC是圆O的直径,∠BAC=35°,求∠P的度数

∵PA,PB是圆O的两条切线,A,B是切点,∴∠PAO=90°,∠PBO=90°∵AC是圆O的直径,∠BAC=35°∴∠BOC=2∠BAC=70°∵∠P=360°-∠PAO-∠PBO-∠AOB=∠BO

如图,已知PA、PB是圆O的两条切线,A、B为切点,

证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO

eb.ec是圆o的两条切线,b.c是切点,ad死圆0上两点,

我会再问:给我再答:你先点个采纳我一会就做出来了再问:靠,我有种上当受骗的感觉喃再答:是的再问:你,,,再问:我太单纯了

PAPB是圆O切线,AB是切点,连接OAOBOP,过O做OC,ODjiao APBP圆CD两点,连接CD,设△PCD周长

CD与圆O位置关系:相切因为PAPB是圆O切线所以PA=PB又因为△PCD周长为L,当CD与圆相切为EAC=CE,DE=DB即AC+BD=CDL=2(AP+BP)L=2AP所以相切

如图,两个等圆⊙O与⊙O’的两条切线OA、OB,A、B是切点,求∠AOB的大小(步骤)

答案见图,理由为 在直角三角形中,如果直角边等于斜边的一半,则该直角边所对的角为30°

已知如图AB CD是圆o的两条平行切线,A C是切点,圆o的另一条切线BD与AB CD分别相交于B D两点.求证BO⊥O

令BD与圆的切点为E连接OE∵OE=OA=r,BA=BE,OB=OB∴△BOA全等△BOE∴∠BOA=∠BOE,即∠BOE=1/2∠AOE同理,∠DOC=∠DOE,即∠DOE=1/2∠COE∴∠BOD

已知P是圆O外一点,PA,PB是圆O的两条切线,切点分别是A,B,BC是直径.求证AC平行OP

证明:连接OA,OB,AB∵PA,PB是⊙O的切线∴∠OAP=∠OBP=90°∵OA=OB,OP=OP∴△OAP≌△OBP∴PA=PB,∠APO=∠BPO∴AB⊥PO∵BC是直径∴∠BAC=90°即A

已知圆O半径是1,PA PB为该圆的两条切线,A,B为两切点,那么向量PA*向量PB的最小值是多少?

设po=x,则AP=BP=根号(x^2-1),sinAPO=1/x.cosAPB=1-2sinAPO^2向量PA*向量PB=(x^2-1)cosAPB,求导求最值即可

过圆O:X2+Y2=R2外一点M(a,b)作圆O的两条切线,P,Q为切点,则过P,Q,M三点的圆方程是?直线PQ的方程是

连接OQ、OP,则PO⊥PM,OQ⊥PQ所以OQPM四点共圆,且OM为直径,即圆心坐标为(a/2,b/2),半径为|OM|/2所以圆方程为:(X-a/2)^2+(Y-b/2)^2=(a^2+b^2)/

PA,PB是圆O的两条切线,A,B是切点,CD切劣弧AB于点E,已知切线PA的长为6cm,则△PCD的周长为多少

/>∵PA、PB切圆O于A、B∴PB=PA=6∵CD切圆O于E∴CE=AC,DE=BD∴CD=CE+DE=AC+BD∴△PCD的周长=PC+CD+PD=PC+AC+BD+PD=PA+PB=12(cm)

如图 PA、PB是圆O的两条切线 切点分别为点A 、B,求证PA=PB

证明:连接PO∵PA、PB是圆O的两条切线∴OA⊥PA,OB⊥PB又∵OA=OB=半径,OP=OP∴Rt⊿PAO≌Rt⊿PBO(HL)∴PA=PB

两道不等式的题已知圆o的半径为1,PAPB为两条切线,AB为两切点,则PA向量点乘PB向量的最小值为()已知0第二小题打

已知圆o的半径为1,PAPB为两条切线,AB为两切点,则PA向量点乘PB向量的最小值为(-3+2*根号2)已知0=(1+根号t)^2