pa pb是圆o的切线,A.B是切点,角p=60度,pa=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:12:41
pa pb是圆o的切线,A.B是切点,角p=60度,pa=2
(2010•怀柔区一模)如图,圆O和圆O'相交于A,B两点,AC是圆O'的切线,AD是圆O的切线,若BC=2,AB=4,

因为AC是圆O′的切线,∴∠CAB=∠D,∵AD是圆O的切线,∴∠BAD=∠C,∴△ABC∽△DBA,∴ABBC=BDAB,又BC=2,AB=4,∴BD=AB2BC=8故答案为:8

已知两曲线A、B外切于一点O,过O作曲线A的切线l 求证:直线l是曲线B过O点的切线

两曲线外切于O点,则O点在曲线A上的斜率=O点在曲线B上的斜率.l与曲线A切于O点,则O点在曲线A上的斜率=直线l的斜率所以直线l的斜率=O点在曲线B上的斜率,即直线l是曲线B过O点的切线

已知PAPB,切圆O于A,B两点连AB,且PA.PB的长是方程x方-2mx+3=0的 两根,AB=m,求圆

PA等于PB所以该方程有两个等根也就是4m²=12所以m=√3PA=PB=AB=√3所以∠OAB=30°所以OA=1阴影等于2倍(△PAO-扇形)△PAO面积√3*0.5扇形面积为π/6所以

直线PA,PB是圆O的两条切线,A、B分别是切点,且角APB=120 度,圆O的半径是4厘米,求切线长AP

角APB=120则角AOB=180-120=60连接OPOP平分角APB和AOB三角形AOP为直角三角形60度角所对边为4所以切线长为3分之4倍根号3

直线PA、PB是圆O的两条切线,A、B分别是切点,且角APB=120 度,圆O的半径是4厘米,

连接BC.在四边形OAPB中,角APB=120度,角A和角B是90度,所以角AOB是60度.又因为角ACB=1/2*角AOB=30度三角形ABC中AC是圆直径,所以角ABC=90度.因此角BAC=18

如图,AB是圆O的直径,直线a,b是圆O的切线,A,B是切点,则a,b有怎么样的位置关系?

a‖b∵a是圆O切线∴a⊥AB(切线与半斤垂直)∵b是圆O切线∴b⊥AB∴a‖b(内错角相等都是90度,两直线平行)

已知AB是圆O的直径,BC是圆O的切线,切点为B,OC平行于AD,求证DC是圆O的切线

OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则

如图,AC是圆O的直径,PA,PB是圆O的切线,切点分别为A,B.OP与CB有怎样的位置关系

OP∥BC.证明:连接OB,AB.∵PA,PB均为圆O的切线.∴∠PAO=∠PBO=90°.(切线的性质)又∵OA=OB,OP=OP.∴⊿PAO≌⊿PBO(HL),∠2=∠3.∵OA=OB,∠2=∠3

如图,已知PA、PB是圆O的两条切线,A、B为切点,

证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO

p为圆o外一点,PA,PB为圆o的切线,A,B是切点,BC是直径.求证:AC‖OP

“樱之雪舞—欣”:OA⊥PA,OB⊥PB(半径⊥切线)PA=PB(圆外一点到圆的切线相等),OP=OP,∠PAO=∠PBO=90°△PAO≌△PBO∠POB=∠POA∠ACO=1/2(∠AOB=∠PO

已知,如图,PA、PB是圆O的切线,A、B是切点,连接OA、OB、OP

1.因为PA为圆O切线所以∠OAP等于90度又因为∠AOP=60°所以∠APO等于30度所以角∠OPB等于30度(这个没什么好说的)2.因为∠APO=∠OPBOP=OP∠COP=∠DOP所以△cop全

如图,PA.PB是圆o的切线,点A.B为切点

S=Spab+圆-弓形AB=(2倍根号3)^2*4分之根号3+TT*2*2-120/360*TT*2*2+2倍根号3*根号3/2

PAPB是圆O切线,AB是切点,连接OAOBOP,过O做OC,ODjiao APBP圆CD两点,连接CD,设△PCD周长

CD与圆O位置关系:相切因为PAPB是圆O切线所以PA=PB又因为△PCD周长为L,当CD与圆相切为EAC=CE,DE=DB即AC+BD=CDL=2(AP+BP)L=2AP所以相切

已知AB为圆O的直径,过B点作圆O的切线BC,连接OC,弦AD平行OC.求证:CD是圆O的切线.

证明:连接BD交OC于E因为AB是直径所以∠ADB=90度所以AD⊥BD因为O为AB中点,AD平行OC所以E为BD中点所以OC⊥BD因为OD=OB所以OC垂直平分BD所以CD=BC因为BC为圆O的切线

已知如图AB CD是圆o的两条平行切线,A C是切点,圆o的另一条切线BD与AB CD分别相交于B D两点.求证BO⊥O

令BD与圆的切点为E连接OE∵OE=OA=r,BA=BE,OB=OB∴△BOA全等△BOE∴∠BOA=∠BOE,即∠BOE=1/2∠AOE同理,∠DOC=∠DOE,即∠DOE=1/2∠COE∴∠BOD

已知P是圆O外一点,PA,PB是圆O的两条切线,切点分别是A,B,BC是直径.求证AC平行OP

证明:连接OA,OB,AB∵PA,PB是⊙O的切线∴∠OAP=∠OBP=90°∵OA=OB,OP=OP∴△OAP≌△OBP∴PA=PB,∠APO=∠BPO∴AB⊥PO∵BC是直径∴∠BAC=90°即A

如图所示,PA、PB是圆O的两条切线,A、B为切线

因为是切线,所以角OBP=角OAP都=90度四边形内角和为360,所以角AOB+角APB=180度三角形AOB中,边OA=OB,所以角OBA=角OAB=(180度-角AOB)/2=(180度-(180

如图,AP是圆心O的切线,A为切点,点B在圆心O上,且PA=PB,求证PB是圆心O的切线.

证明:连接OA,OB,OP.      点B在圆心O上,且PA=PB;