pa垂直平面abc,ae垂直pb,ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:01:02
pa垂直平面abc,ae垂直pb,ab
已知三棱锥P—ABC,平面PAB垂直与平面ABC,平面PAC垂直于平面ABC,AE垂直于平面PBC,E为垂足,求证

(1)过点P向面ABC做垂涎PG垂直于点G∵平面PAB垂直与平面ABC∴PG在平面PAB内又∵平面PAC垂直与平面ABC∴PG在平面PAC内两平面只能有一条交线所以G点与A点重合即PA垂直与平面ABC

若P为三角形ABC所在平面外一点,且PA垂直平面ABC,平面PAC垂直平面PBC,求证BC垂直AC.

在平面PAC中作AD垂直PC于D.根据已知平面PAC垂直平面PBC,故AD垂直面PBC,又BC在平面PBC内所以AD垂直BC,又PA垂直平面ABC,且BC在平面PBC内所以PA垂直BC,又PA与AD相

P为三角形ABC所在平面外一点,且PA垂直于平面ABC,平面PAC垂直于平面PBC,求证BC垂直于AC

过A点,做AH垂直PC于点H因为平面PAC垂直于平面PBC,PC为两面交线AH垂直PC,AH在平面PAC内由两面垂直性质,得AH垂直于平面PBC所以AH垂直于BC又PA垂直于平面ABC,所以PA垂直于

在三棱锥P-ABC中,PA垂直于平面ABC,平面PAB垂直于平面PBC,求证:BC垂直于AB

过A作AD⊥PB交PB于D.∵面PAB⊥面PBC,而PB是面PAB和面PBC的交线,又AD⊥PB,∴AD⊥面PBC,得:AD⊥BC.∵PA⊥面ABC,∴PA⊥BC.∵AD⊥BC,PA⊥BC,而PA∩A

如图,三棱锥P-ABC中,PA垂直于平面ABC,平面PAC垂直于平面PBC,则三角形

由二面角的平面角定义又PA|ABC得PA|AB,PA|AC.则角BAC为B-PA-C的平面角,又PAB|PAC,故BAC直角.

如图,已知PA垂直平面ABC,等腰直角三角形ABC中,AB=BC,AB垂直BC,AE垂直PB于E,AF垂直PC于F

因为:PA垂直平面ABC,所以:PA垂直BC,且AB垂直BC,所以BC垂直平面PAB,于是BC垂直AE;且AE垂直PB,可证明AE垂直平面PBC因为AE垂直平面PBC,所以AE垂直PC,且AF垂直PC

PA垂直平面ABC,AE垂直PB,AB垂直BC,AF垂直PC,垂足分别为E.F求证:EF垂直PC

CB⊥ABCB⊥PACB⊥面PABCB⊥AEAE⊥PBAE⊥面PBCAE⊥PCAF⊥PCPC⊥面AEFPC⊥EF

在三棱锥P—ABC中,PA垂直平面ABC,AB垂直BC,PA=AB,D为PB的中点,求证AD垂直PC

证明:∵PA=AB,∴AD⊥PB,∵PA⊥平面ABC∴PA⊥BC,又BC⊥AB,∴BC⊥平面PAB∴BC⊥平面AD∴AD⊥平面PBC,∴AD⊥PC

立体几何证明1 三棱锥 P-ABC中 PA垂直平面ABC 底面直角三角形ABC的斜边是AB AE垂直PB于E AF垂直P

∵PA⊥平面ABC,∴PA⊥BC,〈BCA=90度,即BC⊥AC,∴BC⊥平面PAC,∵AF在平面PAC内,∴BC⊥AF,∵AF⊥PC,(已知),∴AF⊥平面PBC,∵PB在平面PBC内,∴AF⊥PB

已知平面PAB垂直平面ABC,平面PAC垂直平面ABC,求证PA垂直平面ABC

证明:在平面PAB内取一点S,使SA⊥AB,因为面PAB⊥面ABC,交线为AB,∴SA⊥面ABC,假设SA与PA不是一条直线,即S不在PA上,即S不在面PAC内,则同理知,在平面PAB内,有异于PA的

在三棱锥p abc中,PA垂直于平面ABC,AC垂直BC.求证BC垂直平面PAC

PA⊥平面ABC,BC∈平面ABC,PA⊥BC,BC⊥AC(已知),AC∩AP=A,∴BC⊥平面PAC

如图所示,平面PAB垂直于平面ABC,平面PAC垂直于平面ABC,AE垂直于面PBC,E为垂足求证PA垂直面ABC

∵PAB垂直于平面ABC,平面PAC垂直于平面ABC,平面PAB并上平面PAC=PA,∴PA垂直面ABC(垂直于同一平面的两平面的交线垂直于那个平面,这是个公理啊,老师上课应该有讲到过的吧!)

如图,PA垂直平面ABC,AE垂直PB,AB垂直BC,AF垂直PC,PA=AB=BC=2.(1)求证:平面AEF垂直平面

(1)求证:平面AEF⊥平面PBC;\x0d得BC⊥面PAB,\x0d又AE在面PAB内\x0d得BC⊥AE,AE⊥BC\x0d又AE⊥PB,PB与BC相交\x0d所以AE⊥面PBC\x0d又AE在面

P为三角形ABC所在平面外一点,PA垂直于平面ABC,角ABC=90度,AE垂直PB于E,AF垂直PC于F,求证面AEF

∵PA⊥平面ABC,BC∈平面ABC∴PA⊥BC,又∵BC⊥AB,(〈ABC=90°),∵PA∩AB=A,∴BC⊥平面PAB.2、由前所述,BC⊥平面PAB,AE∈平面PAB,∴BC⊥AE,∵AE⊥P

在三棱锥P-ABC中,PA垂直平面ABC,AB垂直BC,PA=AB,D为PB的中点,求证:AD垂直CD

由于PA⊥面ABC则PA⊥BC而BC⊥AB则BC⊥面PAB即:BC⊥AD又有AP⊥AB且PA=AB则△PAB为等腰直角三角形,AD⊥PB加上前面AD⊥BC即:AD⊥面PBCCD在面PBC上即:AD⊥C

在三棱锥P-ABC中,PA垂直平面ABC,AB垂直BC.求证平面PBC垂直平面PAB

PA垂直平面ABC,那么PA垂直BCAB垂直BC,且AB是平面PAB的线所以BC垂直平面PABBC是面PBC的线所以平面PBC垂直平面PAB

如图,在三棱锥P-ABC中,PA垂直平面ABC,BC垂直PB

取PC的中点O,连结OA、OB∵∠PAC=90°,∴OA=OP=OC∵∠CBP=90°,∴OB=OP=OC∴OA=OP=OB=OC∴P、A、B、C在同一个球面上