pf1=3pf2求e的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:33:23
X²-Y²/3²=1==>C=√[1+3²]=√10.根据向量的平行四边形法则得:2向量PO=向量PF1+向量PF2在RTΔPF1F2中:OP=OF1=OF2=
点P的轨迹是以F!、F2为焦点的椭圆,c=√3,a=2,椭圆方程是x^2/4+y^2=1.使用椭圆的参数方程,假设点P的坐标是(x,y),则向量PF1=(-x-√3,-y),PF2=(-x+√3,-y
∵c²=a²+b²∴c=2∴F1(-2,0),F2(2,0)双曲线参数方程为:x=√3secθ,y=tanθ(这里:-π/2<θ<π/2或者:π/2<θ<3π/2)∵P点
设P(x,y)是双曲线上任一点,明显地,F1、F2坐标分别为(-2,0)、(2、0),因此PF1=(-2-x,-y),PF2=(2-x,-y),因此PF1*PF2=(-2-x)(2-x)+(-y)(-
a=2、b=1、c^2=3,F1(-c,0)、F2(c,0).设P(x0,y0)(-2
根据条件可知曲线E为椭圆,所以c=根号3,a=根号4=2所以方程为x^2/4+y^2/1=1第二问是什么啊
F1(-5,0),F2(5,0)x=|PF1|/|PF2|=(|PF2|+8)/|PF2|=1+8/|PF2|因为|PF2|>=1所以1
由|PF1|-|PF2|=2<4=|F1F2|可知:点P的轨迹E是以F1、F2为焦点的双曲线的右支,由c=2,2a=2,∴b2=22-12=3,故轨迹E的方程为x2−y23=1(x≥0).
由双曲线定义可得:〔F1〕-〔F2〕=2a=2*4=8;由解析式可得焦点(-5,0)(5,0)2c=10;PF1垂直于PF2利用勾股定理可得|PF1|²+|PF2|²=4c&sup
双曲线x^2/a^2-y^2/b^2=1∵|PF1|=4|PF2|∴P在右支上,∵根据双曲线定义,|PF1|-|PF2|=2a∴4|PF2|-|PF2|=2a∴|PF2|=2/3*a∵双曲线右支上点P
设P(x,y)是椭圆x^2/a^2+y^2/b^2=1上任一点,则PF1=(-c-x,-y),PF2=(c-x,-y),所以PF1*PF2=(-c-x)(c-x)+(-y)(-y)=x^2+y^2-c
作PT垂直椭圆准线l于T则由椭圆第二定义PF1:PT=e又PF1:PF2=e故PT=PF2由抛物线定义知l为抛物线准线故T到l的距离等于F2到l的距离即(-c)-(-a^2/c)=c-(-c)得e=c
设出P点坐标然后利用椭圆方程求出L的方程利用乖离率和准线定义求出就可以了
设,点F1坐标为(-C,0),F2(C,0).则抛物线C的方程为:Y^2=4c(x+c),c>0,抛物线C的准线方程为X=-3c,PF1=2c,PF2=4c,PF1:PF2=e=2c/4c=1/2.e
设点P(x,y)则F1P(x+1,y)F2P(x-1,y),|F1P||F2P|=x²-1+y²①椭圆方程为x²+4/3y²=4得x²=4-4/3y&
F1、F2为(-3,0),(3,0)∠F1PF2=60°PF1+PF2=2a=10(F1F2)^2=(PF1)^2+(PF2)^2-2PF1*PF2*cos60°36=(PF1+PF2)^2-3PF1
c+a^2=4c所以e=1/3^(1/2)
设|PF1|=m,|PF2|=n,有题知m²=dn.又m/d=e,则n/m=e,设P横标为x.则e=(a-ex)/(-ex-a)解得x=(-a-ae)/(e²-e),又x≤-a,即
P为双曲线上一点,且有PF1=2PF2∴P在右支上∵PF1-PF2=2a∴PF2=2a∵PF2>=c-a(当P在右顶点时,取等)∴2a>=c-a3a>=ce1∴e的取值范围(1,3]手机提问的朋友在客
如图所示,下面证明椭圆的短轴的一个端点是到椭圆的中心距离最短的点.设椭圆上任意一点P(x0,y0),则x20a2+y20b2=1,可得y20=b2(1−x20a2).∴|OP|2=x20+y20=x2