轻杆AB长为2L,A端连在固定轴上,B端固定一个质量为2m的小球

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:47:40
轻杆AB长为2L,A端连在固定轴上,B端固定一个质量为2m的小球
轻杆AB长2L,A端连在固定轴上,B端固定一个质量为2m的小球,中点C固定一个质量为m的小球,AB杆可以绕A端在竖直平面

(1)在转动过程中,A、B两球的角速度相同,设C球的速度为vC,B球的速度为vB,则有vC=12vB   以A、B和杆组成的系统机械能守恒,由机械能守恒定律,并选最低点为

如图所示,一根长为L的轻杆OA,O端用铰链固定,另一端固定着一个小球A,轻杆靠在一个质量为M、高为h的物块上.若物块与地

一般处理这种问题我们用速度的合成,找到牵连速度,相对速度,绝对速度,他们的关系式:绝对速度=牵连速度+相对速度.你说的题目在《更高更妙的物理》上有原题,是高中物理竞赛涉及的内容.高考不要求掌握.下载地

长为L的轻杆一端固定一个小球另一端固定在光滑的水平轴上使小球在竖直面内做圆周运动,通过最高点的速度

解析:注意这里是杆,不是绳子,既然杆的话,那么,达到最高点的速度可以到达最小为0,(如果是绳子的话,要想做圆周运动,那么在最高点的最小速度肯定是不可以为0的,这点你应该明白)则A向心力和速度的关系式F

1,如图所示,A,B两个带电小球,固定在长为L的轻杆两端,轻杆可以以中点为轴自由旋转,他们的质量分别为2m和m;电量分别

1给你说说原理吧.此题涉及到a电场对电荷的引力的问题,b杠杆原理c圆周运动首先分析可能受力的对象:AB小球,轻杆忽略不计.+q将在电场中受力向下的力F1(具体多大电场力自己算),同时有向下的力F2,故

质量为m的AB两球,分别固定在长为L的轻杆的一端和中点,转至最高点,A球速度为v时,轻杆对A球作用力

在最高点A球速度为V时,因为轻杆对A球作用力恰好为零.这时对A球:它的重力完全提供向心力.mg=mV^2/L得 V=根号(gL)在最高点A球速度为4V时,可知AB段杆对A球的作用力方向是向下的.这时对

长为R的轻绳,上端固定在O点下端连一个小球

(4)细绳转过60°时断开时的速度设为v1/2mv^2=1/2mv0^2-mgR(1-cos60°)v^2=v0-2gR(1-cos60°)=5gR-2gR*(1/2)=4gRv=2*(gR)^1/2

如图所示,长为R的轻绳,上端固定在O点,下端连一小球.

只回答第四问.绳子转过60度角时,小球离地高度是h,小球的速度大小设为V1,V1的方向容易看出是与水平方向成60度.h=R(1-cos60度)=0.5*R由机械能守恒 得 m*V0^2/2=mgh+(

如图所示,一长为L的轻杆一端固定在光滑铰链上,另一端固定在一质量为m的小球,一水平向右

先求拉力F的大小.根据力矩平衡,F•L/2•sin60•=mgLcos60°,得F=2根号3mg/3再求速度v=ω•L/2再求力与速度的夹角θ=30°,

如图所示,长为L的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直平面内作圆周运动,

首先先说一下题目不严谨的地方,轻杆自始至终都没有对小球的弹力作用,而是绳子.你问的是“为什么当v由0逐渐增大到根号gL时,杆对小球的弹力逐渐减小”,但是在整个过程中,小球在任何时刻的速度都不是0,在最

如图所示,重力为G的物体挂在水平横杆的右端C点.水平横杆左端有一可转动的固定轴A,轻杆AC长为L.轻绳的B端可固定在AC

平衡时杆受关于A点的总力矩为0.总力矩是重物产生的力矩与绳BD拉力的力矩之和,因为前者保持不变,所以后者也保持不变.绳BD拉力的力矩等于BD上的拉力乘以A点到BD的距离.力矩不变,要使BD拉力最小,就

如图所示,一根长为L的轻杆OA,O端用铰链固定,另一端固定着小球A,轻杆靠在一个高为h的物块上.若物块与地面摩擦不计,则

根据运动的合成与分解可知,接触点B的实际运动为合运动,可将B点运动的速度vB=v沿垂直于杆和沿杆的方向分解成v2和v1,其中v2=vBsinθ=vsinθ,为B点做圆周运动的线速度,v1=vBcosθ

一根长为L的轻杆下端固定一个质量为m的小球,上端连在光滑水平轴上,轻杆可绕水平轴在竖直平面内运动(不计空气阻力).当小球

A、设轻杆对小球的作用力大小为F,方向向上,小球做完整的圆周运动经过最高点时,对小球,由牛顿第二定律得mg-F=mv2L,当轻杆对小球的作用力大小F=mg时,小球的速度最小,最小值为零,所以A错.B、

质量为m,半径为R的光滑球,放在竖直墙和轻板AB之间,如图所示.A端用绞链固定在墙上,B端用水平细绳拉住.板长l,和墙夹

主要是根据力矩平衡求解问题的.首先对球分析可得球对杆的力F=mg/sina作用点到铰链的距离D=R/tanb角度b=a/2根据力矩平衡F*D=T*lcosa最后化简得T=2mgR/[l*tan(a/2

1m长的轻杆ab,两端各固定一个质量为1KG的钢球,整个系统绕固定轴O在竖直平面内转动,A端到轴的距离是0.6M,当A端

先画图,受力分析:A球受重力、拉力,两者之差提供向心力.列出方程(1)B球运动速度可根据OA、OB长及A的速度求出来,B也是受拉力和重力,两者之差提供向心力.列出方程(2)两杆端受力在数值上分别等于两

在一长为2L的不可伸长的轻杆两端,各固定一质量为2m与m的A B两小球,求:

机械能守恒!1.0=-2mgL+mgL+1/2*(2m+m)v^2v=根号(2gL/3)2.A速度是v,则B速度是v/2,因为角速度相同!0=-2mg*4L/3+mg2L/3+1/2*2mv^2+1/

轻杆AB长2L,A端连在固定轴上,B端固定一个为2m的小球,中点c固定质量为m的小球,AB可以绕着A转动,现将轻杆置于水

1、整体势能变化mgL+2mg*2L=5mgLm球速度v则2m球2v动能=势能mv^2/2+2m(2v)^2/2=5mgL中点c小球v=√[(10/9)gL]B端的小球速度为2v=√[(40/9)gL

如图所示,长为L 的轻杆A一端固定一个质量为m的小球B,另一端固定在水平转轴O上,轻杆绕转轴O在竖直平面内匀速

A、小球做匀速圆周运动,合力沿着轻杆A指向圆心,合力等于重力和杆子作用力的合力,所以轻杆对A的作用力不一定沿杆子方向.故A错误,B正确.C、合力的大小不变,重力不变,根据平行四边形定则,知小球B受到轻

小车AB静置于光滑的水平面上,A端固定一个轻质弹簧,B端粘有橡皮泥,AB车质量为M,长为L,质量为m的木块C放在小车上,

A、物体C与橡皮泥粘合的过程,发生非弹簧碰撞,系统机械能有损失,产生内能,故A错误.B、整个系统在水平方向不受外力,竖直方向上合外力为零,则系统动量一直守恒,故B正确,C、取物体C的速度方向为正方向,