边长为L的菱形ABCD,垂直纸面的匀强磁场

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:14:49
边长为L的菱形ABCD,垂直纸面的匀强磁场
四棱锥P-ABCD,PB垂直AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形

(1)先计算侧面PAD的高位√3,又该侧面于底成120度,所以P到ABCD的距离为√3/2*√3=3/2(2)可以用坐标法做,以底面菱形的中心为原点,对角线为两坐标轴建立坐标系

四棱锥P-ABCD中,侧面PDC是边长为2的正三角形且与底面ABCD垂直,角ADC=60度且ABCD为菱形.

感谢楼主这么看得起我来求助我~取CD中点为E,连结PE.过E做EF⊥AD于F,连结PF∵侧面PDC是正三角形∴PE⊥CD又∵侧面PDC是与底面ABCD垂直,侧面PDC∩底面ABCD=CD∴PE⊥底面A

四棱锥P-ABCD中,侧面PDC是边长为2的正三角形且与底面ABCD垂直,角ADC=60度且ABCD为菱形,M为PB的中

第一个问题:过M作MN∥CD交PA于N.∵ABCD是菱形,∴BA∥CD,而MN∥CD,∴MN∥BA,又M∈PB且BM=PM,∴AN=PN.∵ABCD是菱形,∴AD=DC,又∠ADC=60°,∴△ACD

四棱锥P-ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直,底面是以∠ADC为锐角的菱形.

(1)若PA⊥CD,则PA⊥AB,因为AB//CD取CD中点E,连接PE,所以PE⊥CD,所以CD⊥平面PAE,所以CD⊥AE因为ED=1/2AD,又是菱形,所以∠ADC=60°(2)因为PA⊥AB,

在四棱锥P-ABCD中,侧面PCD是边长为2的正三角形且与底面垂直,底面ABCD是面积为2√3的菱形

(1)求证PA⊥CD作PE⊥DC交DC于E,因为PDC为边长为2的等边三角形,所以E为DC的中点.由ABCD的面积为2√3的菱形△ADC面积=√3=1/2*DA*DC*SIN∠ADC,√3=1/2*2

如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°、边长为a的菱形,侧面PAD为正三角形,且垂直于底面ABCD

①.∵PG⊥AD.BG⊥AD.(正三角形,三合一).∴∠PGB为垂直二面角的平面角.∴∠PGB=90°.∵BG⊥AD.BG⊥PG.∴BG⊥平面PAD.(同时,PG⊥平面ABCD,平面PGB⊥平面ABC

在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,角ABC=45,OA垂直地面ABCD,OA=2,M为OA的中点

AB‖CD,则CD与MD所成角就是AB与MD所成角,OM⊥平面ABCD,AD∈平面ABCD,OM⊥AD,AM=OA/2=1,AD=1,三角形ADM是等腰直角三角形,DM=√2,在三角形ABC中,根据余

如图,边长为2的菱形ABCD中

DE+DF=2连接AC、BD因为在菱形ABCD中,角ABD=角EBF=60度,角BAE=角BDF=60度,AB=DB所以角ABD-角EBD=角EBF-角EBD即:角ABE=角DBF所以在三角形ABE和

如图所示,边长为L的正方形导线框abcd,在垂直于匀强磁场方向的平面内,

E没有抵消,而是叠加!两个电动势相当于两个电池串联,抵消的是F,没有力的作用.

如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°、边长为a的菱形,侧面PAD为正三形,且垂直于底面ABCD

1,G为AD的中点PAD为正三角且垂直面ABCD可知道PG垂直ABCD即PG⊥GB底面ABCD是∠DAB=60°、边长为a的菱形所以BG⊥AD可知求证BG⊥平面PAD2证明AD⊥PGAD⊥GB那么AD

如图,菱形花坛ABCD的边长为6cm

选A连接棱形的那条较短的对角线,易证较短的那条对角线的长度等于棱形的边长.可以看出正六边形的边长是棱形边长的三分之一.可以求得图形的边长为20cm.图形的面积:可以先求出图形一半的面积.在棱形较短的对

如图,在菱形ABCD中,AE垂直BC于点E,EC=1,AE=5,求菱形ABCD的边长.

设AB为XAB=BC=X因为EC=1BE=X-1AE垂直BCAB的平方=AE的平方+BE的平方X的平方=25+(x-1)的平方X=13所以边长为13

菱形ABCD边长为2,∠A为45度,求菱形ABCD的面积

要不要过程,答案是二分之九倍根号二

如图所示, 四棱锥P-ABCD的底面ABCD是边长为1的菱形,角BCD=60度,E是CD的中点,PA垂直底面ABCD,P

连接BD.∵ABCD是边长为1的菱形∴AB=BC=CD=1在△BCD中,BC=CD=1,∠BCD=60°,∴△BCD是等边三角形.∵E是CD的中点∴BE是∠CBD的角平分线,即∠CBE=30°.∵AB

2.菱形ABCD的两条对角线之和为L,面积为S,则它的边长为多少?

菱形面积=对角线乘积的一半对角线设定为小x,yS=(x*y)/2L=x+y边长用勾股定理计算:设边长为zz^2=(x/2)^2+(y/2)^2

四边形ABCD的边长为a的菱形,角ABC=120度,PC垂直于平面ABCD,PC=a,E为PA的中点

答案:arccos根号7/7 (说明:分子:根号7;分母:7)我感觉你这个题目没有给全,还好我刚做过这个题目.答案如下: 希望能够是满意答案.再问:我是文科生,没学过这种方法,能用

在菱形ABCD中,角DAB=60°,AC=3√3,则菱形ABCD的边长为?

连接BD,交AC于O,设AB=2x,则AO=AC/2=(3√3)/2在直角三角形AOB中∵∠BAO=∠DAB/2=30°∴BO=AB/2=x根据勾股定理:AB²-BO²=AO

四棱锥P-ABCD的底面ABCD为边长1的菱形,角BCD=60,E是CD中点,PA垂直底面ABCD,PA=2

1、连结BD,CD=BC,〈BCD=60度,∴△BCD是正△,E是CD中点,则BE⊥CD,CD//AB,故BE ⊥AB,AP⊥平面ABCD,BE∈平面ABCD,AP⊥BE,AP∩AB=A,∴