过仨角形abc呐的 一点p,分别画ab,bc,ca的平行线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:46:31
过仨角形abc呐的 一点p,分别画ab,bc,ca的平行线
点P是等腰直角三角形ABC底边上一点,过点P作BA,AC的垂线,垂足分别为E,F,设D为BC中点,

(1)角A=90°,A在上,B在左因为:△ABC是等腰直角三角形角A=90°,PE垂直AB,PF垂直AC所以:角PEA=角PFA=90°故:四边形AEPF是矩形AE=PF在△PCF中因为:角PFC=9

正三角形ABC内任意一点P过点P做三条边的垂线分别为PEPFPGh为三角形ABC的高a为三角形的边长证h=PE+PF+P

设正三角形ABC,其内一点P,至三边距离为PE、PF,PG,高为h,边长a,分别边结AP、BP、CP,AB=BC=AC=a,S△ABC=S△PAB+S△PBC+S△PAC=(PE*AB+PF*BC+P

如图,已知P是等边△ABC的BC边上任意一点,过P点分别作AB、AC的垂线PE、PD,垂足为E、D.问:△AED的周长与

△AED的周长与四边形EBCD的周长相等.理由如下:在等边△ABC中,∠B=∠C=60°,∵PE⊥AB于E,PD⊥AC于D,∴∠BPE=∠CPD=30°.不妨设等边△ABC的边长为1,BE=x,CD=

在Rt△ABC的内部选一点P,过P点作分别与△ABC三边平行的直线,这样所得到的三角形面积t1,t2,t3,分别为

因为平行,所以图中的三角形都相似,所以面积比是相似比得平方.因为3个三角形t1,t2,t3的面积比为4:9:49所以它们的边长比为2:3:7.即PD:PE:HG=2:3:7可以设它们的边长分别为2x,

已知如图,P是等边三角形ABC的BC边上的任意一点,过P分别作AB、AC的垂线PE和PD,垂足分别为E、D 求证:三角

证明:因为等边三角形ABC中,PE⊥AB于E,所以∠EPB=30°,所以BE=BP/2,同理CD=PC/2,所以BE+CD=BP/2+PC/2=(BP+PC)/2=BC/2,所以AE+AD=(AB-B

等腰三角形ABC中,P为底边BC上任意一点,过P作两腰的平行线分别与AB﹑AC相交于Q,R两点,又D是P关于直线RQ的对

如图,连P′B,P′C,P′Q,P′R,P′P,∵AB=AC,∴∠ABC=∠ACB,∵PQ∥AC,∴∠QPB=∠ACB,∴∠QPB=∠QBC,∴QP=QB,又∵P′是P关于直线RQ的对称点,∴QP=Q

过三角形ABC内的一点P,分别作AB,BC,CA的平行线 要图 ,

就如同过直线外一点做平行线.过P做AB的平行线.

如图 三角形abc中内一点P,过P作三边平行线,所得小三角形面积分别为4,9,49,那么三角形ABC面积是多少?

是144,挺简单的.利用相似三角形边长比的平方=面积比这个定律,楼主先自行思考下,晚上给你过程!过程:△PIE∽△DMP,得出PE/DP=根号(9/4)=3/2,继续得到,PE/DE=3/5.由△PI

过三角形ABC内的一点P,分别作AB,BC,CA的平行线.

要有两把直尺或三角板,以边AB为例,直尺1的一边对准AB边,直尺2对准直尺1的另一边,让直尺1沿直尺2移动至p点,可做AB的平行线,其余两条同理可得.

如图,△ABC是边长为4CM的三角形,P是△ABC内的任意一点,过点P作EF‖AB分别交AC,BC于点E,F,作GH‖B

应该是边长为4CM的“正”三角形吧∵EF‖AB,GH‖BC,MN‖AC∴四边形AMPE,BGPF,CNPH都是平行四边形AM=EP,AE=MP,BG=FP,BF=GP,CN=HP,CH=NP且△ABC

如图:Rt△ABC中,角ABC=90°,BC<AB,在BC的延长线上取一点P,使BP=BA,分别过点B,P作AC的垂线B

做PF垂直BD的延长线交于点F,因为角PBD=角A,BP=AB,角ACB=角BPF=角ABD,所以三角形ABD全等于三角形BPF,所以AD=BF,因为DF=PE,所以AD=PE+BD

△ABC内一点P,过P作三边的平行线,所得的小三角形面积分别为4,9,49那么△ABC面积是多少?

因为DE//AB所以∠MPD=∠PNJ因为IJ//AC所以∠PMD∠NPJ所以三角形MPD相似于三角形PNJ因为三角形MPD与三角形PNJ面积比为4:49所以相似比DP:JN为2:7(相似三角形面积比

P是△ABC内一点,连接PB.PC,试比较PB+PC与AB+AC的大小 图是一个大三角形里包含一个小三角形

延长BP,交AC于点D在△ABD中,AB+AD>BD∴AB+AD>∵在△PCD中PD+CD>PC∴AB+AD+PD+CD>BP+PD+PC∴AB+AC>PB+PC

在三角形ABC中,BD,CE为角平分线,P为ED上任意一点.过P分别作AC,AB,BC的垂线,M,N,Q为垂足,求证:P

证明:如图,过点P作AB的平行线交BD于F,过点F作BC的平行线分别交PQ、AC于K、G,连PG∵BD平分∠ABC∴点F到AB、BC两边距离相等∴KQ=PN∵EPBFCGPD=FD=GD∴PG∥EC∵

如图,圆O是△ABC的外接圆,过A,B两点分别作⊙O的切线PA,PB交于一点P,连接OP

连接AO和BO,PO=PO,∠PAO=∠PBO=90°,AO=BO,证明△OAP与△OBP全等.r=2根号3,最大值为6+2根号3再问:这是什么啊???能竖着写吗。我多给你分。谢谢了。

分别过三角形的三个顶点作它对边的平行线,所得的大三角形的面积与三角形ABC的面积有什么关系?

所得的大三角形的面积是三角形ABC面积的4倍.把图画出来就明白.

如图,已知P是等边△ABC内任意一点,过点P分别向三边作垂线,垂足分别为D,E,F.求证:PD+PE+PF是不变的值

因为没图,设D,E,F分别在AB,BC,CA上,连接PA,PB,PC则△ABC被分为3个小三角形,△PAB,△PBC,△PCA△ABC的面积=△PAB的面积+△PBC的面积+△PCA的面积设△ABC的

已知p是等边△ABC内任意一点,过点P分别向三边做垂线,垂足分别为点D.E.F,试证明PD+PE+PF是不变的值.

证明:由三角形的面积很容易证明.S△ABC=S△PAB+S△PCB+S△PACS△PAB=AB*PD/2S△PCB=BC*PD/2S△PAC=AC*PF/2又:等边三角形AB=BC=CA所以:S△AB

分别过三角形的三个顶点作为它的对边的平行线,所得的大三角形的面积与三角形ABC的面积有什么关系?

1.∵边相似比为2:1∴面积比为4:12.假设小正方形与圆的接触点和大正方形与圆的切点重合,连圆心与切点,则该线段长为圆的半径及小正方形对角线长一半及大正方形边长的一半S小=R*R/2,S大=2R*2