过原点的直线l与抛物线y=x^2-4x所围成图形的面积为36

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:57:52
过原点的直线l与抛物线y=x^2-4x所围成图形的面积为36
已知抛物线C:y^2=4x,O为坐标原点,焦点F关于y轴的对称点E,过点E作动直线l交抛物线C与M,P两点.

抛物线C:y^2=4x焦点F(1,0),F关于y轴的对称点E(-1,0)设直线l:x=ty-1代入y^2=4x得:y^2=4ty-4即y^2-4ty+4=0Δ=16t^2-16>0,t>1或t|y1|

抛物线X^2=4y 与过点M(0,2)的直线L相交于A.B两点,O为坐标原点,若直线OA与OB的斜率之和为2,求直线方程

设A(x1,x1^2/4)、B(x2,x2^2/4),直线方程为y=kx+2代入x^2=4y得:x^2-4kx-8=0x1+x2=4k(x1^2/4)/x1+(x2^2/4)/x2=x1/4-x2/4

抛物线Y=X^2-2aX(a>0),若过原点的直线L与抛物线所围成的图形面积为9/2a^2,求直线L的方程

设Y=kx,因为Y=KX=X^2-2aX=0,所以x1=0,x2=2a+k,所以S=9/2a^2=∫2a+k[kx-(X^2-2aX)]0所以S=9/2a^2=1/6(2a+k)^3所以k=3a^(2

抛物线y=-x^2/2与过点M(0,1)的直线l交于A,B两点,O为原点,若OA和OB的斜率之和为1,求直线l的方程

个人感觉是不存在这样的直线l.假设存在,亦知l与x轴垂直时不满足条件,l与x轴平行时亦不满足条件,所以可以设出l的方程为y=kx+1,与抛物线方程y=-x^2/2联立,整理得:x^2+2kx+2=0因

已知过点P(0,2)的直线l与抛物线C:y^2=4x交与A,B两点,O为坐标原点.求

易知L斜率存在,且不为0不妨设y=kx+2,A(x1,y1),B(x2,y2)(1)易知该圆圆心即AB中点Q(x0,y0),x0=(x1+x2)/2,y0=(y1+y2)/2……①由该圆以AB为直径,

已知抛物线y=-x^2/a+2x(a>0),过原点的直线l平分由抛物线与x轴所围成的封闭图形的面积,求l的方程.

估计要用到定积分易知抛物线过(0,0)和(2a,0)令直线L:y=kx因x=0时y'=2,表明0再问:能画个图不看起来直观一点再答:

过抛物线y^2=4x的焦点F的直线L与这条抛物线交于A.B两点,O为坐标原点

1.设A、B、G坐标为(x1,y1)(x2,y2)(x3,y3)L为y=kx-k(k≠0)3x3=x1+x23y3=y1+y2将直线方程代入抛物线方程得:ky^2-4y-4k=04(x1+x2)=y1

已知抛物线C:y^2=4x,直线L:y=kx+b与C交于A,B两点,O为坐标原点(1)当k=1时,且直线L过抛物线C的焦

(1)抛物线C:y2=4x的焦点为(1,0)由已知l:y=x-1,设A(x1,y1),B(x2,y2),联立,消y得x2-6x+1=0,所以x1+x2=6,x1x2=1=(2)联立,消x得ky2-4y

已知抛物线y平方=8x,直线l过抛物线的焦点F,且倾斜角为45,直线l与抛物线交于CD两点,

设C(x1,y1)D(x2,y2)由题目可知:p=4那么焦点F(2,0)因为直线的倾斜角为45,所以斜率为1所以直线方程为:y=x-2带入抛物线方程中有:(x-2)^2=8x即是:x^2-12x+4=

已知过点p(0,2)的直线l与抛物线y∧2=4x交于a,b两点,o为坐标原点.

易知L斜率存在,且不为0不妨设y=kx+2,A(x1,y1),B(x2,y2)①易知该圆圆心即AB中点Q(x0,y0),x0=(x1+x2)/2,y0=(y1+y2)/2……①由该圆以AB为直径,且过

已知椭圆的中心在原点,其左焦点F1与抛物线y的平方=-4x的焦点重合,过F1的直线L与椭圆交于A,B两点,与抛物线交于C

1、由于抛物线y^2=-4x的焦点坐标为(-1,0),故c=1(对于椭圆而言)当直线L与x轴垂直时,|CD|:|AB|=2√2此时|CD|=4,故|AB|=√2又|AB|=2b^2/a=√2a^2-b

已知抛物线y^2=2x,直线l过点(0,2)与抛物线交与M,N两点,以线段MN的长为直径的圆过坐标原点O,求直线l的方

设直线方程为y=kx+2代入y²=2xk²x²+4kx+4-2x=0k²x²+(4k-2)x+4=0x1+x2=(2-4k)/k²x1×x2

抛物线Y=-2分之X的平方与过点M(0,1)的直线L交于A,B两点,O为原点,若OA,OB的斜率之和为1,求直线L

设直线L方程y=kx+b过点M(0,1),1=k*0+b,b=1y=kx+1与y=-x^2/2交点A(x1,y1),B(x2,y2)OA斜率=y1/x1,OB斜率=y2/x2y1/x1=-x1^2/2

已知圆M:x^2+y^2-4x=0及一条抛物线,抛物线的顶点在原点,焦点是M的圆心f,过F作倾斜角为a的直线l与抛物线及

F(2,0)抛物线y^2=8xl:y=a(x-2)AB+CD=AD-BC,∴分别计算AD和BC连列y=ax-2a和x^2+y^2-4x=0整理得(1+a^2)x^2-4(1+a^2)x+4a^2=0B

过点P(1,0)的直线l与抛物线y^2=2x交于MN两点,O为原点.若直线OM,ON斜率之和为1,求L的直线方程

设x=ky+b,带点p就得b=1,这样x=ky+1,OMON斜率之和为1,设M(x1,y1)N(x2,y2).则是y1/x1+y2/x2=1将x1=ky1+1,x2=ky2+1.带入,则得到一个关于y

过点(0,-1)的直线l与抛物线y=-x^2交与A,B两点,O是原点,则向量OA*向量OB=

由于有两个交点,则此直线的斜率存在,设直线为y=kx-1,代入抛物线方程,得kx-1=-x²,即x²+kx-1=0,设交点为A(x1,y1)、B(x2,y2),则OA*OB=x1x

定积分:过原点的直线l与抛物线y=x2-4x所围成的图形的面积是36,求l的方程

设y=kx与抛物线交点(0,0),(4+k,4k+k^2)k>0S=∫(0,(4+k))[kx-x^2+4x]dx=(4+k)^3/6=36k=2k

过点A(0,1)的直线L与抛物线Y^2=2X交于B,C,O为原点.若直线0B,0C的斜率之和为1,求直线L的方程

设两交点为B(X1,Y1)C(X2,Y2)因为直线过A(0,1)所以设此直线斜率为k,则有直线方程Y=kX+1所以存在Y1=kX1+1和Y2=kX2+1将Y=kX+1和Y^2=2X联立,可以得到一个方

已知抛物线y^2=2x,直线l过点(0,2)与抛物线交与M,N,以线段MN的长为直径的圆过坐标原点,求直线L的方程

M(y1²/2,y1)N(y2²/2,y2)MN的中点坐标(y1²/4+y2²/4,y1/2+y2/2)(y1²/4+y2²/4)²

已知抛物线y=-x^2/a+2x,过原点的直线l平分由抛物线与x轴所围成的 面积求l的方程

因为过原点,设直线方程方程为y=kx由y=-x²/a+2x=-(1/a)x(x-2a)=-(1/a)(x-a)²+a可知:抛物线与x轴交于(0,0)、(2a,0)两点,极值为a,关