过圆锥顶点作一界面,则面积最大的截面

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:28:42
过圆锥顶点作一界面,则面积最大的截面
圆锥中过顶点的截面中切面面积最大的是哪一种?为什么

肯定是经过正截面了.你可以计算底*高底全部都是弦长,高度就是底的截距*截距与截弦的正弦而底一样任何一个截距,截距与弦的正弦都小于正截面的截距(直径)与正弦值

一个圆锥轴截面的顶角为120°,母线为1,过顶点作圆锥的截面中,最大截面面积为————

圆锥轴截面顶角为120度,则高与母线的夹角为60度,母线与底面直径的夹角为30度.故圆锥的高=1/2,底面半径为√[1²-(1/2)²]=√3/2,底面直径为√3.所以截面的最大面

圆锥轴截面的顶角为120°,过顶点的截面三角形的最大面积为8,则该圆锥的侧面积为__

圆锥轴截面的顶角为120°,过顶点的截面三角形的最大面积时,截面三角形应该是直角三角形直角三角形面积=1/2*L²=8,L=4圆锥底面半径R=√3/2*L=2√3圆锥底面周长C=2πR=4π

1.圆锥的母线长为L,高为1/2L,则过圆锥顶点的最大截面的面积是( )

1.L²/2设截面三角形(两腰为母线)的顶角为α,那么S=1/2·sinα·L²≤L²/2(由于原圆锥的锥角为120°,所以“=”能取到)2.1或7两个圆面的半径分别是3

圆锥的母线长为L,高为二分之一L,则过圆锥顶点的最大截面的面积为?

由题意中的母线长=L和高=1/2L的关系,得出轴截面是一个顶角为120º角的等腰三角形而面积最大的截面是经过两条互相垂直的母线的截面,得出最大面积公式:S最大面积=L*L*1/2=L

圆锥的母线长为L,高为二 分之一L,则过圆锥顶点的最大截面的面积

由题意中的母线长=L和高=1/2L的关系,得出轴截面是一个顶角为120º角的等腰三角形而面积最大的截面是经过两条互相垂直的母线的截面,得出最大面积公式:S最大面积=L*L*1/2=L

已知圆锥的母线长为L,则过圆锥顶点的面积最大的截面是否一定是轴截面?最大值是多少

设截面截底面的线段长距底面圆心为x,可证所有截面为三角形,底面半径为R,则截面截底面的线段长为A=2(X2+R2)^1/2,圆锥高H=(L2-R2)^1/2,截面积为S=2A((H2+X2)^1/2)

已知一圆锥轴截面的顶角为120°,过顶点的截面三角形的最大面积为2,则圆锥的母线长为______.

如图,过圆锥顶点P认作一截面PAB,交底面圆与AB,∵圆锥轴截面的顶角为120°,则∠APB=90°,∴过圆锥顶点的截面中,最大截面面积为2.12l2=2,∴l=2.圆锥的母线长为:2.故答案为:2.

圆锥轴截面为顶角等于120度的等腰三角形,且过顶点的最大截面面积为2,则圆锥的母线长为

答案是二,对过顶点的最大截面,是母线垂直的截面面积1/2*L*L=2即L²=4即L=2.L是母线长.再问:【是母线垂直的截面面积1/2*L*L=2】咋来的???再答:是这两条母线垂直,构成直

圆锥的轴截面是所有过顶点的截面中面积最大的一个?为什么错的?

不一定哦,当截面倾斜一个角度后,界面的高增加,底减小,需要列个函数计算

设圆锥的母线长为L 轴截面的顶角为120°,用过顶点的平面去截圆锥,则截面三角形的最大面积

截得的三角形,是等腰三角形,腰长即母线长.S=((sina)*(A+B))\2你自己画个图,一目了然.啊.再问:老师,那么题目强调轴截面顶角为120°是说明可以取到90°吗?再答:可以这么理解。这个题

圆锥母线长为l,高为0.5l,则过圆锥顶点的最大截面的面积(不知道哪里错,

这个轴面的面积不是最大.无论怎么切,一定是个以圆锥顶点为顶点,腰长为母线长L的等腰三角形S=(1/2)L²sinθ(θ为等腰三角形顶角)又因为母线长L,高0.5L,可得轴截面三角形顶角为12

圆锥的底面半径是r,高为r/2,则过此圆锥顶点截面中,最大截面面积是

截面面积最大是母线和底面夹角为90的时候最大.

圆锥高为20,底面半俓25,过它的顶点作一截面,若底面圆心到截面距离12,求截面面积.

PC=√(PO^2-OC^2)=16△POC∽△PBOPC×PB=PO^2BP=OP^2/PC=25OB=√(BP^2-PO^2)=15BD=√(OD^2-OB^2)=20DE=2BD=40S截=1/

几何题:圆锥高为20,底面半俓25,过它的顶点作一截面,若底面圆心到截面距离12,求截面面积.

若“底面圆心到截面距离12”说的是底面圆心到截面底中点距离n,则截面底弦长2m,截面底中线高h,h^2=20^2+12^2=544,m^2=25^2-12^2=481截面面积=hm/2=√(481*5

已知圆锥的母线与底面所成角为30度,母线的长为2,则过圆锥顶点的截面的最大面积为

设高为h,圆锥底面半径为a,则h=2sin30=1a^2+h^2=2^2a=√3s=2x1/2xah=√3圆锥最大面积为√3

圆锥的轴截面是所有过顶点的界面中面积最大的一个.这句话为什么不对?

当轴截面的三角形的顶角大于90度时,轴截面就不是最大的,此时两条母线成直角时的截面积最大.(S=1/2L^2sinα,L是母线长,α是截面三角形顶角)