运筹学单纯形法
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:49:45
Rj=Cb*B^-*Aj-Cj.Rj表示:第j列的检验数.Cb表示A中基B对应的价值系数向量.B^-表示基矩阵B的逆.Aj表示A的第j列向量.Cj表示j列对应的价值系数.Rj
确定换入基和换出基的变量之后,把所对应的那个数不是用[]圈上了吗,比方说换入基变量为x2,换出基变量为x5,假设所对应的那个被圈上的数是5,为了进一步形成新的单纯形表,一开始的单纯形表里,5所在的那行
我觉得你是不是没看懂这个格式的,就d2-来说,它的检验数是P2+5P3计算检验数:基变量检验数=0非基变量检验数σj=Cj-CBtPj再问:这里跟线性规划的单纯性法不一样,检验数是算行而不是列,具体怎
f=[1,2,-1];%目标矩阵A=[2,1,-1;1,-2,2;1,1,1];%系数矩阵B=[4;8;5];lb=zeros(1,3);[x,fv]=linprog(f,A,B,[],[],lb)
收集的一个小故事,摘自北大ukim写的的《数学牛人们的轶事》被大家称为线性规划之父的Dantzig(丹齐克),据说,一次上课,Dantzig迟到了,仰头看去,黑板上留了几个题目,他就抄了一下,回家后埋
在做题时你首先看看看原问题与对偶问题是否可行,如果原问题可行而对偶问题不可行则用单纯型法解决,如果对偶问题可行而原问题不可行则用对偶单纯型法,再利用对偶问题的时候如果b满足条件而检验数不满足条件,这说
无效约束(即不起作用约束);有效约束(即起作用约束);这是根据对偶定理的来的:(∑aixi-bi)×yi=0
可以用两种方法第一个:用大M法,直接加入两个剩余变量和人工变量,然后运用单纯形表进行迭代不过目标函数是MIN,所以目标函数应该是MINf=x1+x2+Mx4+Mx6,或者转化为MAX的情况就可以了,加
图片可证明.你可以看看书中单纯形法的初等数学形式.
选1500也可以做不过要x3出基那么可能答案的步骤比选1000要多一般选入基的有2种一种选如15001000中的大的入基二种根据b来选择比如这题选择bj/aij中小的来入基
对于线性规划问题标准型,最优性判别条件所有检验数均小于等于零.如果是求最小问题,则最优性判别条件是所有检验数均大于等于零.检验数是用非基变量表示基变量,带入目标函数的表达式中得来的非基变量的系数.它的
令y1=x1-1y2=x2-2y3=x3-3化为标准型maxz=y1+6y2+4y3+25-y1+2y2+2y3+y4=44y1-4y2+y3+y5=21y1+2y2+y3+y6=9y1,y2,y3>
这表格里的是Zj-Cj>=0为最终判断,而你学的应该是Cj-Zj
“西格玛1=C1-Z1=2-(3*1+0*4+0*0)=-1”,这个错了啊,应该是“西格玛1=C1-Z1=2-(0*1+0*4+0*3)=2”
从中随便选一个,继续计算就是了
DATASEGMENTSSTRDB'ABCDEFG……Z'DATAENDSEXTRSEGMENTDSTRDB26DUP(?)EXTRENDSCODESEGMENTASSUMECS:CODEDS:DAT
让B的逆阵乘以(0+△b1,50,50)T的积大于等于零就行了,从而解出b1的范围
1、增加新的约束条件,将最优解代入新的约束条件,若成立则最优解不变,反之则改变,加入新约束后所得的表并不是一张单纯形表,因为新约束系数破坏了原最优基的单位矩阵,要先用矩阵的初等行变换将基变量的系数列向
对;最优解存在,一定在可行域的某个极点;补充知识:并且,极点就是可行域中不能用其他点的线性组合来表示的点.如果有两个极点同时最为最优解,那么这两个极点的线性组合表示的所有点都是最优解,也就是无穷多最优
令y1=x1-1y2=x2-2y3=x3-3化为标准型maxz=y1+6y2+4y3+25-y1+2y2+2y3+y4=44y1-4y2+y3+y5=21y1+2y2+y3+y6=9y1,y2,y3>