连接AC分别交DE,DF于点M,N,求证MN=1 3AC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:05:19
因为BG平行与AC所以角GBD=角DCA又因为角BDG=角CDFD为BC中点,所以BD=CD,所以由角角边的定理推出三角形BGD全等于三角形CFD,所以BG=CF.(2):由于全等,所以D也为GF的中
图给的有问题,左边的是E点.B和D点互换(题目说了点EF分别是ABBC边中点)证明:连结BD,BG,BH∵△ABH中,AE=EB,AG=GH,∴EG‖BH,∵△BGC中,BF=FC,CH=GH,∴FH
证明:连结BD,BG,BH∵△ABH中,AE=EB,AG=GH,∴EG‖BH,∵△BGC中,BF=FC,CH=GH,∴FH‖BG,∴□GBHD,∴GH,BD互相平分.∵AG=HC,∴BD与AC互相平分
这个问题?D是BC的中点就可以了啊.因为要使AEDF是平行四边形的话,AE必须平行于DF.又因为F是ac的中点.所以D也是BC的中点.
连接ODOE因为点D,E分别是弧AB,弧AC的中点所以OD垂直AB,OE垂直AC所以角EDO+角DMB=90度同理角DEO+角ENC=90度又因为ODOE是半径所以相等所以角EDO=角DEO所以角DM
BE+CF>EF因为BD=DC,AC//BG所以DBG≌DCF所以GD=DFBG=FC又因为ED⊥DFSOGDE≌FDESOEG=EF在三角形BGE中BE+BG>EGSOBE+CF>EF
证明:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD
证明:∵AB⊥FC,DE⊥FC∴∠ABC=∠DEF=90,∠ABF=∠DEC=90∵BC=CE+BE,EF=BF+BE,BF=CE∴BC=EF∵AC=DF∴△ABC≌△DEF(HL)∴∠A=∠D,∠C
则点Q取自阴影部分的概率是2/3MN与EF的比值是2/3再问:上面三个2怎么来的?为什么都是2?再答:
∵E,D是AB,AC的中点∴DE是⊿ABC的中位线∴ED=½BC,ED//BC∵M,N是GB,GC的中点∴MN是⊿GBC的中位线∴MN=½BC,MN//BC∴ED=MN,ED//M
不变化.理由如下:∵DE∥AC,DF∥AB∴四边形AEDF为平行四边形∴DF=AE(平行四边形的对边相等)又∵AB=AC∴∠B=∠C(等边对等角)∵DE∥AC∴∠EDB=∠C∴∠EDB=∠B(等量代换
∵ABCD是正方形∴AC⊥BD,OA=OD=OC=OB∴OC-CF=OD-DE即OE=OF在△AOE和△DOF中OE=OF,OA=OD,∠AOE=∠DOF=90°∴△AOE≌△DOF(SAS)∴∠OA
∵四边形ABCD为正方形,对角线AC、BD交于点O∴AO=DO=BO=CO,∠AOB=∠BOC=∠COD=∠AOD又∵DE=CF∴OE=OF∴△AOE≌△DOF(SAS)
∵ABCD是正方形∴AC⊥BD,OB=OC=OA=ODAD=CD=AB=BC∠ADB=∠DCA=45°即∠ADE=∠DCF=45°∴在等腰直角三角形BOC中:OC=√2/2BC=√2/2AB∵AM⊥D
证明:BE‖DF,∠AEB=∠CFD;AB‖CD,∠BAE=∠DCF,AB=CD△ABE≌△CDFBE=DF
证明:1.△ADF≌△CDE∴DF=DEDF⊥DEDM⊥EF∴M为EF中点∴DM=EF/2=BM2.还没想出来
互相垂直理由如下:∵AD平分角A,DE垂直AB,DF垂直AC∴DE=DF,角DEA=角DFA=90∴△DEA≌△DFA(HL)∴AE=AF又∵AD平分角A∴AD垂直于EF
证明:∵AD∥BC∴DG/EG=AD/CE∵AB∥CD∴DF/DE=BC/CE∵AD=BC∴DF/DE=AD/CE∴DG/DE=DF/DE∴DG*DE=DF*EG数学辅导团解答了你的提问,
1证三角形BFE全等三角形DEF.因为FE=EF,角BEF=90度=角DFE,DF=BE(全等三角形的对应高相等).所以三角形BFE全等三角形DEF.所以∠DEF等于∠BFE(全等三角形对应角相等)2