逆的转置等于转置的逆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:49:39
(A)+r(A^T)=n没这个结论再问:打错了,555555~~~~伴随矩阵。。。再答:r(A*)+r(A)=n?也不对r(A)=n时,r(A*)=nr(A)=n-1时,r(A*)=1r(A)
注意:一个矩阵与它的转置矩阵相等,这样的矩阵叫对称矩阵.一个矩阵的逆矩阵等于它本身,这样的矩阵是单位阵,或称幺阵,记作I,也有资料记作E.
这是矩阵的秩的性质.A的秩=A的行向量组的秩=A的列向量组的秩如果把a看作A的行向量组的秩,那么b就是A的列向量组的秩,所以它们相等.满意请采纳^_^
凡是一个矩阵可表示成一个列矩阵乘该列矩阵的转置形式(A=ααT),则该矩阵A的n次方必与A差一常数倍K,其中K=tn-1,t=αTα.
数学公式这里不好写,所以就用图片了.
矩阵A的转置矩阵A^T等于A的逆矩阵A^-1那么AA^T=AA^-1=E设A=(α1,α2,α3,...,αn)^T,其中αi为n维列向量,那么A^T=(α1,α2,α3,...,αn),α1^Tα1
一般来讲不相等简单的例子A=0100
A是实矩阵就可以实矩阵是指A中元素都是实数不一定是对称矩阵.此时r(A^TA)=r(A)证明方法是用齐次线性方程组AX=0与A^TAX=0同解.A不一定是方阵,不一定可逆再问:如果换作A的伴随乘以A,
等于,因为他的逆也是对称矩阵注意到转置和逆是可交换的,也就是(A^-1)^T=(A^T)^(-1)因为A是对称的,故(A^-1)^T=A^(-1)得证.
(A*)^T的第(ij)元素=A*的第(ji)元=aji的代数余子式=A^T的第(ij)元的代数余子式=(A^T)^*的第(ij)元.
A是正交阵
A的阶次?(KA)^-1=1/KA^-1再问:暂且设为n吧再答:再答:再答:再问:那转置矩阵呢再答:再问:多谢多谢
首先,当n>1,关于伴随矩阵的秩,有如下结果:若r(A)=n,则r(A*)=n;若r(A)=n-1,则r(A*)=1;若r(A)证明:当r(A)=n,有A可逆,|A|≠0.于是由A*A=|A|·E可得
a^T=a^-1则(a^T)a=E(E为单位阵)则|(a^T)a|=1,则|(a^T)a|=|(a^T)||a|=|a||a|=1由于a的行列式小于零所以|a|=-1
设A是m×n的矩阵.可以通过证明Ax=0和A'Ax=0两个n元齐次方程同解证得rank(A'A)=rank(A)首先Ax=0肯定是A'Ax=0的解.其次A'Ax=0x'A'Ax=0(Ax)'Ax=0A
|AA^T|=|A||A^T|=|A||A|=|A|^2
等于,以n=3为例证明如下:利用(AB)T=BT*AT(AT)^3=AT*AT*AT=(A*A*A)T=(A^3)T
是矩阵加法定义
A的转置矩阵记为B、A的逆矩阵记为C、C的转置矩阵记为DAC=CA=E两边同时取转置DB=BD=E显然B(A的转置矩阵)的逆矩阵为D(C的转置矩阵)而C就是A的逆矩阵.
|AA^T|=|A||A^T|=|A||A|=|A|^2再问:不是AAT的行列式,就是A乘以AT,我问的是为什么AAT=|A|^2再答:这不会.AA^T是一个矩阵,|A|^2是一个数肯定是AA^T的行