P为△ABC内一点,求证1∠BDCPB+PC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:26:07
P为△ABC内一点,求证1∠BDCPB+PC
初一下学期一题如图,P为三角形ABC内一点,求证:PA+PB

延长AP和BC相交于D点AC+CD>ADAD=AP+PDPD+BD>PB把三个式子整合起来就可以得到下面的结果:AC+CD+PD+BD>AP+PD+PB同时减去PD可以得到AC+CD+DB>AP+PB

1、设P为三角形ABC内一点,求证

第一题:并不困难的一道题,最容易的一个解法是建系解析,利用直线的斜率(正切)和向量求解即可.第二题:多说一些吧:第一步:不妨设a>b>c,a=b+m=c+m+n,m,n>0;第二步:a^2+b^2+c

已知P为三角形ABC内一点,求证AB+AC>BP+CP

证明:延长BP交AC于D∵AB+AD>BD,PD+CD>CP∴AB+AD+PD+CD>BD+CP∵AD+CD=AC,BD=BP+PD∴AB+AC+PD>BP+PD+CP∴AB+AC>BP+CP

已知p为三角形abc内任意一点.求证:1/2(ab+bc+ca)

已知P为三角形ABC内任意一点.求证:1/2(AB+BC+CA)CA,PA+PB>AB,三式相加得:2(PA+PB+PC)>AB+BC+CAPA+PB+PC>(AB+BC+CA)/2.因为AB+AC>

1、若P为△ABC所在平面外一点,且PA=PB=PC,求证点P在△ABC所在平面内的射影是△ABC的外心.

1)做P点在△ABC所在平面内的射影P'点,连接P'A、P'B、P'CPP'⊥面ABC,又PA=PB=PC由三垂线定理可得P'A=P'B=P'C点P在△ABC所在平面内的射影P'是△ABC的外心.2)

设P点为三角形ABC内一点,求证PA+PB+PC大于1/2(AB+BC+CA)

利用‘三角形的两边之和大于第三边’可得:PA+PB>ABPB+PC>BCPC+PA>CA将三式相加,得2(PA+PB+PC)>AB+BC+CAPB+PB+PC>(AB+BC+CA)/2

如图,设P为三角形ABC内任意一点,求证:1/2

因为PA+PB>AB,PB+PC>BC,PA+PC>AC,三式相加得2(PA+PB+PC)>AB+BC+CA,所以PA+PB+PC>1/2(AB+BC+CA)

如图,P为△ABC内一点,求证:AB+AC>PB+PC.

延长BP交AC于D,在△ABD中AB+AD>PB+PD(△两边之和大于第三边)(1)在△PCD中PD+CD>PC(同上)(2)(1)+(2),得AB+AD+PD+CD>PB+PD+PC即:AB+AC>

如图,P为等边△ABC内任意一点,连接PA、PB、PC,求证:

解;(1)∵PA+PB>ABPB+PC>BCPC+PA>AC,∴(PA+PB+PB+PC+PC+PA)>AB+BC+AC,∵AB=BC=AC,∴2(PA+PB+PC)>3AB∴PA+PB+PC>32A

已知P为△ABC内一点,求证AB+AC>BP+PC

∵∠ABC>∠PBC,∠ACB>∠PCB;∴∠A<∠P∵BC=BC;根据大角对大边∴AB>PB,AC>PC;∴AB+AC>BP+PC很高兴为您解答,skyhunter002为您答疑解惑如果本题有什么不

已知P是△ABC内一点,求证:AP+BP+CP>1/2(AB+BC+CA)

根据两边之和大于第三边,所以AP+BP>ABBP+CP>BCAP+CP>AC加起来就行了~

已知p为三角形abc内任意一点.求证在:1/2(AB+BC+CA)

利用‘三角形的两边之和大于第三边’可得:PA+PB>ABPB+PC>BCPC+PA>CA将三式相加,得2(PA+PB+PC)>AB+BC+CAPB+PB+PC>(AB+BC+CA)/2延长BP于AC交

已知p为三角形abc内任意一点.求证在:2/1(AB+BC+CA)

证明:延长BP与AC边相交于点D,由三角形两边之和大于第三边得AB+AD>BD,PD+DC>PC,故AB+AD+PD+DC>BD+PC=PB+PD+PC,AB+AD+DC>PB+PC,即AB+AC>P

如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.

证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC

P为△ABC内任意一点,求证:PA+PB+PC>1/2(AB+BC+AC)

由三角形△两边之和大于第三边可知PA+PB>ABPA+PC>ACPB+PC>BC上三式两边求和2*(PA+PB+PC)>AB+AC+BC所以PA+PB+PC>1/2(AB+BC+AC)

p为三角形ABC内任意一点,求证:PA+PB

延长AP,交BC于M,AC+MC>AM=AP+PM,BM+MP>PBAC+MC+BM+MP>AP+BP+PMPA+PB

在△ABC中,∠BAC=120度,点P为△ABC内一点.求证:PA+PB+PC大于AB+AC

初二水平的奥数题我做过都有这种提示了,没理由做不出来了再给你点提示以A为中心,将ABP旋转60度到三角形外得AP'B'CAB'三点共线,AP=AP'

(1)如图1说是,弱P为等边三角形ABC内一点,∠BPC=150°,求证;PA²+PB²=PC

1)把△APC绕点P顺时针旋转60°,得△A’PC’,即∠CPC’=60°..PC=PC’即CPC’为等边三角形,于是PC=CC’,∠BCC’=∠ACB=60°,即∠BCC’=∠ACP又AC=BC,故

P为锐角△ABC内任意一点,求证:PA+PB+PC<AB+AC+BC

证明:在三角形APD中AD+PD>PA(1)在三角形PDC中DC+PD>PC(2)在三角形ABD中AB+AD>PB+PD(3)在三角形BDC中BC+DC>PB+PD(4)把它们加起来得AB+BC+2A

如图所示,P是△ABC内一点,连接PB、PC.求证:∠BPC>∠A

太简单了连接AP交BC与点D则∠BPC=∠BPD+∠CPD∠A=∠BAD+∠CAD由于∠BPD>∠BAD∠CPD>∠CAD则得证再问:详细点再答:哪里不懂再问:为什么∠BPD>∠BAD,∠CPD>∠C