P为正方形ABCD对角线BD上一点PE垂直DC,PD垂直bc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:56:44
(1)∵ABCD是正方形,∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos4
连cp可用全等证明cp=apcp又=ef所以ap=ef再问:CP为什么等于EF再答:pecf是矩形,对角线相等再问:终于明白了
证明:(1)∵四边形ABCD是正方形,∴AB=CB,∠ABD=∠CBD=12∠ABC,在△ABP和△CBP中,AB=CB∠ABP=∠CBPBP=BP,∴△ABP≌△CBP(SAS);(2)∵△ABP≌
作PH⊥BC,PG⊥AB∵BD为∠ABC角平分线∴PG=PH∵GB垂直BCPG垂直BAPH垂直BC∴∠GPF+∠FPH=90∵∠GPF+∠FPH=∠GPF+∠APG=90∴∠FPH=∠APG∴△APG
证明:连接PC.∵四边形ABCD是正方形∴AD=CD又∵BD是正方形ABCD的对角线∴∠ADB=∠CDB=90°在△ADP与△CDP中AD=CD{∠ADB=∠CDBPD=PD∴△ADP≌△CDP(SA
把你写的过程整理了一下:S△BCE =S△BEP +S△BCP,分别将它们的面积写成底乘高除以2:BC*EH/2=BE*PR/2+BC*PQ/2,其中BE=BC上式消掉BC、BE,
EF=AP.理由:∵PE⊥BC,PF⊥CD,四边形ABCD是正方形,∴∠PEC=∠PFC=∠C=90°,∴四边形PECF是矩形,连接PC,∴PC=EF,∵P是正方形ABCD对角线上一点,∴AD=CD,
(1)∵ABCD是正方形,∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=∠BPF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=
⑴当P点在AB上时:∵正方形边长=√2,对角线AC=√2×√2=2,∴AO=BO=1,∴正方形面积=2,∴△AOB的面积=2/4=½,连接PO,则△APO面积+△BPO面积=△ABO面积=&
连接AC,交BD于点O则AC⊥BD,AO=CO∵正方形的边长为1,所以AC=√2,CO=√2/2连BP∵S△BPC=1/2*BC*PQ,S△BPE=1/2BE*PR,S△BCE=1/2*BE*CO∴1
①⊿BEP等腰直角,AEPF为矩形,∴BE=EP=AF.又OA=OB.∠OAF=∠OBE=45º∴⊿OAF≌⊿OBE(SAS),∴OF=OE.∠FOA=∠EOP②∠FOE=∠FOA+∠AOE
以A为坐标原点,以AB为X轴正方向,以AD为Y轴正方向建立直角坐标系,则A(0,0),B(2,0),C(2,2),D(0,2),∵P点有对角线AC上,设P(x,x),0<x<2所以.AP=(x,x),
(1)连接PC,因为两边和一个夹角均相等,所以三角形APD与CPD全等.AP=PC=10而PE垂直DC,PF垂直BC,PF=EC=8(勾股定理).(2)不管P在哪里,都满足AP^2=PE^2+PF^2
设PM⊥AC,PN⊥BD,垂足为M,N,对角线交点为O,则P到对角线AC,BD的距离之和为PM+PN,在正方形ABCD中,∠BAO=∠BAC/2=45,所以△APM是等腰直角三角形,所以AM=PM,又
很简单.过P作PM,PN垂直AB,AD,证明PF=BF=PMPE=ED=PNSAS全等得证再问:能不能详细点?我不是很懂再答:
PC=PE证明:连PA,DA=DC DP=DP ∠ADP=∠CDP=45°∴△ADP≅△CDP &
连接PC,∵PE⊥DC,PF⊥BC,ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=P
记正方形ABCD的边长为a(1)作PF延长线交AD于Q,则四边形DEPQ为正方形∴PQ=DQ=3而PQ=FQ-PF=a-4即a-4=3∴a=7AD=7∴AQ=AD-DQ=4∴AP=√9+16=5(2)
∵BD=2;∴BC=CD=2÷√2=√2;∵∠BDC=∠DPE=∠DBC=∠BPF=45°∴DE=PE;BF=PF;∴四边形PEFC周长=PE+PF+FC+CE=BC+CD=2√2;很高兴为您解答,s