p是圆o外一点 pa pb切于圆o 角cod

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:42:46
p是圆o外一点 pa pb切于圆o 角cod
如图,P是圆O外一点,PA,PB分别与圆O相切于点A,B,点C是弧AB上一点,经过点C作圆O的切线,分别与PA,PB相交

 (1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等;      OC=OA, OD=OD;三角

如图,P是圆O外一点,PA切圆O于点A,AB是圆O的直径,BC//OP切交圆于点C,请准确判断直线PC与圆O是怎样的位置

连接AC,OC∵AB为⊙O直径∴AC⊥BC(严谨一些的话,要先∠ACB=90°再垂直)∵BC//OP∴OP⊥AC.(其实这里要写上∵BC//OP,∠BCA=90°,导出内错角也为90°,再OP⊥AC)

p是圆O外一点,PA ,PB分别切圆O与A,B,OP与AB相交于M,C为弧AB上一点,求证角OPC等于角OCM.

就是要证△COM∽△POC即证OC^2=OM*OP,又OC=OA,OA^2=OM*OP,得证

已知,点P是圆O外一点,连接PO交圆O于点C弦AB垂直OP于点D,若角DAC等于角CAP,求证:PA是圆O的切线

延长PO交圆0于点E,连接AE因为EC是圆O的直径所以角EAC=90度因为AD垂直EC所以角ADC=90度因为角ACD=角ECA所以角DAC=角EAO因为角DAC=角CAP所以角EAO=角CAP所以角

如图,ab为园o的直径,c是圆o上一点,p是圆o外一点,op//bc,角p=角bac

(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△

P是圆O外一点,PA切圆O于A,AB是圆O的直径,PB交圆O于C,若PA=2cm,角B=30°,求出图中阴影部分面积.

根据切割鉴定理:PA²=PC*PB(可通过△PAC∽△PBA证明)则PB=PA²/PC=4,BC=PB-PC=4-1=3∵A是切点,则OA⊥PA∴AB²=PB²

如图已知P是圆O外一点,PA切圆O于A,AB是圆O的直径,PB交圆O于C,PA=2cm,PB=4cm,求图中阴影部分的面

过C点.O点做辅助线CO,过O点做垂线,垂直PA交PA于D.由题意知,角PAB为直角.PB=2PA,所以角ABP等于30度.因圆心角是圆周角的2倍,所以角POA等于60度.在三角形PBA中,PB=4,

P是圆O外一点,PA切圆O于A,AB是圆O的直径,PB交圆O于C,若PA=2cm,PC=1,求阴影部分面积

根据切割鉴定理:PA²=PC*PB(可通过△PAC∽△PBA证明)则PB=PA²/PC=4,BC=PB-PC=4-1=3∵A是切点,则OA⊥PA∴AB²=PB²

如图,已知P是圆O外一点,PA,PB分别切圆O于A,B,PA=PB=4,C是弧AB上任意一点,过C作圆O的切线分别交PA

∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8

如图,已知p是圆o外的一点,PA切圆o 于A,AB是圆O的直径,PB交圆O于C,若 PA=2cm,

PA切圆O于A,BA⊥PA,∠BAP=90°,PA=2cm,PB=4cm;PA=PB/2,则∠B=30°;AB²=PB²-PA²=4²-2²=12AB

如图,已知P是圆o外的一点,PA切圆o于A,PB切圆o于B,BC是圆o的直径,求证:AC∥OP

∵PA切圆o于A,PB切圆o于B连接PO则OP平分∠AOB即∠AOB=2∠POB∵弧AB所对圆心角为∠AOB,所对圆周角为∠ACB(同弧所对圆心角是圆周角的二倍)∴∠AOB=2∠ACB∴∠POB=∠A

直线与圆的题两道P为圆O外一点,PA、PB分别切圆O于A、B两点,MN是过劣弧AB上一点C的切线,分别交PA于M,交PB

因为是填空题,我们可以用特例法解题.设MN⊥OP,则MC=NC设OP=2r,则OA=OB=OC=CP=rOA^+AP^=OP^r^+7^=(2r)^=>r=7√3/3显然∠OPA=∠OPB=30°MP

PAPB是圆O切线,AB是切点,连接OAOBOP,过O做OC,ODjiao APBP圆CD两点,连接CD,设△PCD周长

CD与圆O位置关系:相切因为PAPB是圆O切线所以PA=PB又因为△PCD周长为L,当CD与圆相切为EAC=CE,DE=DB即AC+BD=CDL=2(AP+BP)L=2AP所以相切

已知:如图,P是圆O外一点,PA、PB分别切圆O于A、B,连OP,交圆O于C,连AC、BC,D是优弧AB上一点,∠ADC

连结CE,BD,∵PA、PB分别切圆O于A、B,∴弧AC=弧BC∴∠CDB=∠ADC=30°,又∵∠EFD=∠BFD=Rt∠,DF=DF∴△BFD≌△EFD∴EF=BF=1/2BE=2,BD=ED在R

在圆o中,弦AB、CD相交于圆o外一点p,AD、BC相交于点E,则图中相似三角形有答案是4对

∵四边形ABCD内接于圆O∴∠PBD=∠PCA(内接于圆的四边形的角与对应的外角相等)∠PDB=∠PAC,∵∠P=∠P∴△PBD相似于△PCA

如图,PA,PB分别切圆O于点A,B,角P等于58度,C是圆O上一点,求角C

连接OA、OB∵PA、PB分别切⊙O于点A、B,∴OA⊥PA、OB⊥PB,∵∠P=58°,∴∠AOB=122°,∴∠C=61°.

P是圆O外一点,PA,PB分别切圆O于A、B两点,若∠APB=2α,圆O的半径为R,则AB的长?为什么?证明

在Rt三角形OAP中,PA=OA/tanα=R/tanα.连结OP交AB于点D.在Rt三角形PAD中,AD=PAsinα=Rsinα/tanα=Rcosα.所以,AB=2AD=2Rcosα.