P是等边△ABC内任意一点,PD∥AB交BC于点D,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:39:09
P是等边△ABC内任意一点,PD∥AB交BC于点D,
已知:P是△ABC内任意一点,试说明AB + AC > BP +PC

延长BP交AC于M,两次应用“三角形两边之和大于第三边”即可得证.再问:能说详细点么再答:AM+AB>BM=BP+PM,PM+MC>PC两式两边分别相加得AM+MC+AB>PB+PC,即AB+AC>P

如图,P为等边△ABC内任意一点,连接PA、PB、PC,求证:

解;(1)∵PA+PB>ABPB+PC>BCPC+PA>AC,∴(PA+PB+PB+PC+PC+PA)>AB+BC+AC,∵AB=BC=AC,∴2(PA+PB+PC)>3AB∴PA+PB+PC>32A

点P是等边△ABC内一点,且PA=2 PB=2倍根号3 PC=4 求△ABC的边长

作∠PAD=60°,且使D、P在AB的两侧.过A作AE⊥BP交BP的延长线于E.∵△ABC是等边三角形,∴AB=AC、∠BAC=60°.显然有:∠DAB=∠PAD-∠PAB=60°-∠PAB=∠BAC

P是等边△ABC内任意一点,PD‖AB,PE‖BC,PF‖AC,求证:PD+PE+PF为定值

答案是a先延长DP,EP,FP假设FP的延长线交BC与G因为ABC是正三角形,且PD‖AB,PE‖BC,PF‖AC所以,PF=BD,PD=DG,PE=GCPD+PE+PE=BD+DG+DC=BC=a

如图,△ABC是等边三角形,P为三角形内任意一点,边长为1.

(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+

如图,在△ABC中,P是△ABC内任意一点,证明∠BPC>∠A

延长BP与AC交于D点,∠BPC是△PDC外角所以∠BPC>∠BDC而∠BDC是△ABP的外角,所以∠BDC>∠A故∠BPC>∠A.

设P是等边△ABC内一点,PA=4,PB=3,PC=5,求∠APB的度数

将三角形APB绕点B顺时针旋转60°到三角形BP'C因为BP'=BP,PBP'=60°所以是等边三角形BPP'所以PP'=4CP'=AP=3PC=5PC^2=PP'^2+CP'^2PP'C=90°BP

如图,已知等边△ABC的髙为2013,P为△ABC内任意一点,PD垂直AB于D点,PE垂直于E点,试求PD+PE+PF的

AM=PD+PE+PF证明:S△ABC=BC*AM/2等边三角形中三边相等S△ABC=PD*BC/2+PE*AC/2+PF*AB/2=(PD+PE+PF)*BC/2∴BC*AM/2=(PD+PE+PF

如图,P为等边△ABC内任意一点,PA=4,PB=2根号3,PC=2,求S△ABC=

把三角形APC顺时针旋转60度,AC与AB重合,得到一个三角形AP'B连结PP',AB与PP'相交于D,则

如图,点P是△ABC内任意一点,试说明PB+PC

证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC所

三角形ABC内任意一点P证明PA+PB+PC

错题一个,除非B是最小角,否则不一定成立.

如图,P是等边△ABC内一点,若AP=3,BP=4,CP=5,求∠BPA的度数

将三角形BPC绕着B点逆时针旋转60度(或者换一个说法,在三角形外取一点Q,使三角形PBD相似于三角形QBA)这时候再连结QP亮点那么很容易得到三角形PQB是正三角形那么QP变长就是4三角形PQA的三

等边△ABC内一点P,P到三边的距离分别为PD=1,PE=3,PF=5,求△ABC的面积

楼上不详细,设边长为X,面积S=1/2×X(PD+PE+PF)=X×二分之根号三X×1/2得出PD+PE+PF=高所以.

如图,P是等边△ABC外接圆BC上任意一点,求证:PA=PB+PC.

证明:在PA上截取PD=PC,∵AB=AC=BC,∴∠APB=∠APC=60°,∴△PCD为等边三角形,∴∠PCD=∠ACB=60°,CP=CD,∴∠PCD-∠DCB=∠ACB-∠DCB,即∠ACD=

等边△ABC中,在BC边上任意取一点P,过点P作AC的平行线,

(1)过点P作AC的平行线交AB于E∵AC‖EQ∴∠EQC=60∵∠ACQ=120,∠ACB=60∴∠BCQ=60∴BC=QC∵AC=BC,∠ACB=∠BCQ∴ACP≌BQC∴AP=BQ

如图,在等边△ABC中,AB=2,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合)过点P作PE⊥BC,垂足

(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°AB=AC=BC=2∵PE⊥BC于E∴∠PEB=90°∴△BPE是直角三角形∴BP=2BE同理可证:EC=2FCAF=2AQ∵BP=xAQ=y∴B

等边三角形ABC内任意一点,过点P向三边垂直,垂足分别是D、E、F,AH是等边BC上的高,求证AH=PE+PF+PD?

我的空间有这题的详细解答,但要注意字母的位置和你的题目有差异,应该能帮助你解答这个问题了.确有疑问发消息给我.

如图,已知P是等边△ABC内任意一点,过点P分别向三边作垂线,垂足分别为D,E,F.求证:PD+PE+PF是不变的值

因为没图,设D,E,F分别在AB,BC,CA上,连接PA,PB,PC则△ABC被分为3个小三角形,△PAB,△PBC,△PCA△ABC的面积=△PAB的面积+△PBC的面积+△PCA的面积设△ABC的

已知p是等边△ABC内任意一点,过点P分别向三边做垂线,垂足分别为点D.E.F,试证明PD+PE+PF是不变的值.

证明:由三角形的面积很容易证明.S△ABC=S△PAB+S△PCB+S△PACS△PAB=AB*PD/2S△PCB=BC*PD/2S△PAC=AC*PF/2又:等边三角形AB=BC=CA所以:S△AB

在等边△ABC中,P为三角形内任意一点,过P作PD⊥BC,PE⊥AB,PF⊥AC,连结PA、PB、PC,

过P做BC平行线GH,设AG=2a则PE+PF=三角形AGH的高=根3/2AG=根3a设PF=xPE=根3a-xAE=2a-((根3a-x))/根3=a+x/根3阴影面积=1/2((根3a-x)(a+