锥面z=(x^2 y^2)^1 2被柱面在z^2=2截下的部分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:55:53
两个办法:一个是用积分,一个是用立体角①用积分用球面坐标,设半径r与z轴夹角为φ,r在XOY平面上投影与x轴夹角为θ则积分区域为:0≤r≤1,0≤φ≤π/4,0≤θ≤2π两曲面所围成立体体积为V=∫d
先采纳了我告诉你
本题适合用截面法来计算用竖坐标为z的平面来截立体,得到的截面方程为D:x^2+y^2=z^2,截面为圆,其面积为:πz^2∫∫∫sinzdv=∫sinz(∫∫dxdy)dz中间那个二重积分的积分区域为
不需要那样做由z=√(x^2+y^2)和z^2=2x可得曲面在xoy平面的投影为Dxy:(x-1)^2+y^2≤1dz/dx=x/√(x^2+y^2),dz/dy=y/√(x^2+y^2)√((dz/
对于z=f(x,y),曲面面积为A=∫∫DdA=∫∫D√[1+(əf/əx)²+(əf/əy)²]dxdy锥面z=√(x²+y
可以直接使用高斯公式:没问题的话麻烦采纳吧,/
解这两个方程所组成的方程组即可.两式相减:z²=50-z²,得:z=5或-5故x²+y²=25因此曲线是两个半径为5的圆.
再问:三重积分可以表示为体积?
补一个面(构成封闭曲面),用高斯公式:补面∑1:z=h取上侧(构成封闭圆锥面的外侧)x²+y²≤h²原积分=∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-
∵锥面z²=x²+y²被圆柱面x²+y²=2ax所截∴所截部分的曲面面积在xy平面上的投影是D:x²+y²=2ax∵αz/αx=x
用球坐标算:原式=∫[0,2π]dθ∫[0,π/4]dφ∫[0,2](sinφcosθ+sinφsinθ+cosφ)^2*ρ^4sinφdρ=32(2-√2)π/5
Gauss公式.∂P/∂x+∂Q/∂y+∂R/∂z=1+1+2z-2=2z∫∫Σxdydz+ydzdx+(z²-2z)
∫∫∑e^z/√(x^2+y^2)dxdyə[e^z/√(x^2+y^2)]/əz=e^z/√(x^2+y^2)=∫∫∫Ωe^z/√(x^2+y^2)dxdydz=∫[0,2π]d
第一个函数化简得到z^2+x^2+y^2=4,z>0,是一个位于z轴正半轴的^2,总体积就是这两者之和,为(16-8*3^(1/2))π/3.
设M1(x1,y1,z1)为准线上的任意点,那么过M1的母线为:x/x1=y/y1/z/z1---(1)而且:x1^2/9-y1^2/4=1---(2)x1-y1-z1+6=0---(3)由(1),(
/>要求锥面z=√(x^2+y^2)与柱面z^2=2x所围立体在xoz面的投影可以分开求锥面z=√(x^2+y^2)在xoz面的投影,和柱面z^2=2x在xoz面的投影,这两个投影重叠部分即为锥面z=
http://hi.baidu.com/522597089/album/item/d33979029fbb74761c9583ac.html#
V=∫dt∫r*rdr=2π/3.