锥面z^2=x^2 y^2被柱面z^2=2x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:47:30
两个办法:一个是用积分,一个是用立体角①用积分用球面坐标,设半径r与z轴夹角为φ,r在XOY平面上投影与x轴夹角为θ则积分区域为:0≤r≤1,0≤φ≤π/4,0≤θ≤2π两曲面所围成立体体积为V=∫d
先采纳了我告诉你
不需要那样做由z=√(x^2+y^2)和z^2=2x可得曲面在xoy平面的投影为Dxy:(x-1)^2+y^2≤1dz/dx=x/√(x^2+y^2),dz/dy=y/√(x^2+y^2)√((dz/
由于,柱面的准线为x=2z,x=y*y+z*z.(将原题中的X=2z改写为:x=2z)而x=2z为一平面.故它就是准线所在平面.即所求柱面的母线垂直于此平面.此平面(x=2z)的法向量为n=(1,0,
对于z=f(x,y),曲面面积为A=∫∫DdA=∫∫D√[1+(əf/əx)²+(əf/əy)²]dxdy锥面z=√(x²+y
可以用曲面积分来求.因为曲面是锥面z=2√x^2+y^2的一部分.满足z'x=2x/√x^2+y^2,z'y=2y/√x^2+y^2设∑表示x^2+y^2=2x所围成的圆域,S∑表示这个圆的面积.所求
柱面(x^2+y^2)^2=x^2-y^2化成极坐标方程是r^2=cos2θ.即r=√cos2θ.θ的范围是[-π/4,π/4]∪[3π/4,5π/4]S=∫∫dS=∫∫√[1+(z'x)^2+(z'
解这两个方程所组成的方程组即可.两式相减:z²=50-z²,得:z=5或-5故x²+y²=25因此曲线是两个半径为5的圆.
D={(x,y):x^2+y^2=0,y>=0},z=xy,az/ax=y,az/ay=x,于是面积=二重积分_D根号(1+(az/ax)^2+(az/ay)^2)dxdy=二重积分_D根号(1+x^
求母线平行于X轴的柱面方程,只须消去两个方程中的x,得柱面方程为:3y^2-z^2=16求母线平行于y轴的柱面方程,只须消去两个方程中的y,得柱面方程为:3x^2+2z^2=16
补一个面(构成封闭曲面),用高斯公式:补面∑1:z=h取上侧(构成封闭圆锥面的外侧)x²+y²≤h²原积分=∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-
∵锥面z²=x²+y²被圆柱面x²+y²=2ax所截∴所截部分的曲面面积在xy平面上的投影是D:x²+y²=2ax∵αz/αx=x
同济六版 10-4, 2TS = √2π见图.
Gauss公式.∂P/∂x+∂Q/∂y+∂R/∂z=1+1+2z-2=2z∫∫Σxdydz+ydzdx+(z²-2z)
=∫x(yzx^2-1/2(xz)^2)dx+∫y(1/2x^2+xy)dy=[1/3yzx^3-1/6z^2x^3+1/2x^2y+1/2xy^2]|z[0,2]、y[0,1]、x[0,1]=1
/>要求锥面z=√(x^2+y^2)与柱面z^2=2x所围立体在xoz面的投影可以分开求锥面z=√(x^2+y^2)在xoz面的投影,和柱面z^2=2x在xoz面的投影,这两个投影重叠部分即为锥面z=
http://hi.baidu.com/522597089/album/item/d33979029fbb74761c9583ac.html#
V=∫dt∫r*rdr=2π/3.