锥面被柱面截得的有限区域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 17:11:49
锥面被柱面截得的有限区域
利用柱面坐标系画出锥面和球面上半部分构成的图形(mathematica)

RegionPlot3D[z>=3*Sqrt[x^2+y^2]&&(*与球面改了球心位置,否则空图!,自己按需要再改参数*)x^2+y^2+(z-3)^235,PlotRange->All]

判断题:定积分的基本要求是被积区域有限和被积函数有界.是 正确 还是 错误?

正确,若是被积区域无限和被积函数无界则为反常积分

求锥面z=√(x^2+y^2)被柱面z^2=2x所割下部分的曲面面积

不需要那样做由z=√(x^2+y^2)和z^2=2x可得曲面在xoy平面的投影为Dxy:(x-1)^2+y^2≤1dz/dx=x/√(x^2+y^2),dz/dy=y/√(x^2+y^2)√((dz/

求柱面(x-1)^2+(y-1)^2=1被平面z=0及曲面z=x^2+y^2所截得曲面面积A

设l为柱面的底,即圆(x-1)^2+(y-1)^2=1.那么设x=1+cost,y=1+sintz=x^2+y^2=(1+cost)^2+(1+sint)^2=3+2cost+2sintdl=√[(x

30分!求柱面(x-1)^2+(y-1)^2=1被平面z=0及曲面z=x^2+y^2所截得曲面面积A

如图:再问:你好,这个是什么软件做出来的?3dmax吗?就是说面积是14.31吧再答:忘了说明,3DMAX测量物体时,当体积为0时,其表面积是指该薄片上下两层的表面积。所以输出数据14.31,实际只是

用matlab画球面和柱面相交所成区域

clear;clc;r=1;%r的值自己改%柱面部分t=linspace(0,2*pi,37);q=linspace(-1,1,11);[tt,qq]=meshgrid(t,q);x=r/2*(cos

证明锥面z=2√x^2+y^2被柱面x^+y^=2x所截得的有限部分的面积为√5π

可以用曲面积分来求.因为曲面是锥面z=2√x^2+y^2的一部分.满足z'x=2x/√x^2+y^2,z'y=2y/√x^2+y^2设∑表示x^2+y^2=2x所围成的圆域,S∑表示这个圆的面积.所求

曲面2z=x^2+y^2被柱面(x^2+y^2)^2=x^2-y^2所截下部分的曲面

柱面(x^2+y^2)^2=x^2-y^2化成极坐标方程是r^2=cos2θ.即r=√cos2θ.θ的范围是[-π/4,π/4]∪[3π/4,5π/4]S=∫∫dS=∫∫√[1+(z'x)^2+(z'

如图,过圆锥的顶点s和底面圆的圆心o的平面截圆锥得锥面三角形abc,其中sa=sb,ab是圆锥底面圆o的直径,已知sa=

S=1/2LR(这个公式是我们老师推出来的,你可以试试)=1/2乘以4乘以π乘以7=14π(cm^2)祝你学习进步,更上一层楼!不明白请及时追问,满意敬请采纳,O(∩_∩)O谢谢~~记得及时评价啊,答

车工车锥面角度的计算方法?

锥体各部分名称及代号;D-大头直径,b-小头直径,L-工件全长,a-钭角,2a-锥角,K-锥度,l-锥体长度,M-钭度.锥体各部分计算公式;M(钭度)=tga(=tg斜角),=D-d/2l(=大头直径

求双曲抛物面z=xy被柱面x^2+y^2=1(x>=0,y>=0)截下部分的面积.

D={(x,y):x^2+y^2=0,y>=0},z=xy,az/ax=y,az/ay=x,于是面积=二重积分_D根号(1+(az/ax)^2+(az/ay)^2)dxdy=二重积分_D根号(1+x^

锥面z^2=x^2+y^2被圆柱面x^2+y^2=2ax所截部分的曲面面积

∵锥面z²=x²+y²被圆柱面x²+y²=2ax所截∴所截部分的曲面面积在xy平面上的投影是D:x²+y²=2ax∵αz/αx=x

∫∫xdydz+ydzdx+(z^2-2z)dxdy 其中∑为锥面 z=根号x^2+y^2 被平面z=0 和z=1所截得

Gauss公式.∂P/∂x+∂Q/∂y+∂R/∂z=1+1+2z-2=2z∫∫Σxdydz+ydzdx+(z²-2z)

计算曲面积分如图其中曲面是柱面x^2+y^2=1被平面z=0和z=3所截得的在x》=0的部分,取外侧

高斯公式法.取Σ:x²+y²=1,前侧补Σ1:z=3,上侧补Σ2:z=0,下侧补Σ3:x=0,后侧∫∫(Σ+Σ1+Σ2+Σ3)ydzdx=∫∫∫Ω(0+1+0)dxdydz=∫∫Ω

通用曲面方程用一个数学模型表示出球面方程,柱面方程,锥面方程和平面方程.

球面(x-a)^2+(y-b)^2+(z-c)^2=R^2柱面(x-a)^2+(y-b)^2=R^2锥面z=+√(x^2+y^2)或-√(x^2+y^2)平面ax+by+cz+d=0

求锥面z=√ (x^2+y^2)与柱面z^2=2x所围立体在xoz面的投影.

/>要求锥面z=√(x^2+y^2)与柱面z^2=2x所围立体在xoz面的投影可以分开求锥面z=√(x^2+y^2)在xoz面的投影,和柱面z^2=2x在xoz面的投影,这两个投影重叠部分即为锥面z=