R(ABCD),F={,B->D,D->B,AB->C)是第几范式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 05:37:18
两种相关联的量,一种量变化,另一种量也随着变化.且一种量随着另一种量的增大而增大.如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系,我们就称这两
⑴令a=b=0则f(0)=f(0+0)=f(0)+f(0)∴f(0)=0⑵令a=-b则0=f(0)=f(a+(-a))=f(a)+f(-a)∴f(-a)=-f(a)即函数为奇函数⑶任取x1<x2,则x
1:令a=b=0得f(0)=02:令a+b=0得f(0)=f(a)+f(b)=0,f(a)=-f(b)=-f(-a)(奇函数)3:令x2>x1>0f(x2)-f(x1)=f(x2)+f(-x1)=f(
证明:①因为x∈R,所以定义域满足要求;②令a=b=0,则有:f(0)=f(0)+f(0)→f(0)=0;③令a=-b,则有:f(0)=f(a)+f(-a)=0即:对任意a∈R,有:f(-a)=-f(
⑴:假设a=b=0则可推出f(0+0)=f(0)+f(0)即f(0)=2f(0)得知f(0)=0⑵:假设a=xb=-x则可推出f(x+(-x))=f(x)+f(-x)即f(0)=f(x)+f(-x)代
f(0+0)=f(0)+f(0),所以f(0)=0;f(a+(-a))=f(a)+f(-a),所以f(a)+f(-a)=f(0)=0.所以f是奇函数.
假如f(0)=0,则对任意x,有f(x)=f(x+0)=f(0)f(x)=0,不符合题意,即f(0)不等于0.即a=b=0,则f(a+b)=f(0)=f(0)f(0),即f(0)=1.当x>0时,f(
(1)逆命题:函数f(x)在(-无穷大,+无穷大)上是增函数,a,b属于R,若f(a)+f(b)>=f(-a)+f(-b),则a+b>=0证明:反证法若a+
∵函数f(x)满足f(a+b)=f(a)•f(b)(a,b∈R),且f(x)>0∴f(0)=f2(0)∴f(0)=1∵f(1)=12∴f(2)=f(1).f(1)=14∴f(0)=f(2)f(-2)=
题目有误,对任意x∈R,x=(x-c/2)+c/2,f(x)=f((x-c/2)+c/2)=f(x-c/2)f(c/2)=0,即f(x)≡0,最小正周期不存在.周期为任意实数.如果把题目修改为:函数f
解由f(a+b)=f(a)-f(b)令a=b=0即f(0+0)=f(0)-f(0)即f(0)=0再去a=x,b=-x则f(a+b)=f(a)-f(b)变为f(x+(-x))=f(x)-f(-x)即f(
由题知f(1)=2f(1+0)=f(1)+f(0)=2所以f(0)=0f(0)=f(-1+1)=f(-1)+f(1)=0f(-1)=-2
(1)已知f(a+b)=f(a)f(b),令a=0b=1则f(a+b)=f(a)f(b)=>f(0+1)=f(0)f(1)=>f(1)=f(0)f(1)得f(0)=f(1)÷f(1)=1令a=1b=-
逆命题:对于R上的增函数f(x)和任意的a,b属于R,若f(a)+f(b)>=f(-a)+f(-b),则a+b>=0先证明原命题的否命题,若a+
f(a+b)=f(a)+f(b)取a=b=0得f(0+0)=f(0)+f(0)即f(0)=0取a=x,b=-x代入得f(x-x)=f(x)+f(-x)即f(x)+f(-x)=0,f(-x)=-f(x)
(1)f(a+b)=f(a)*f(b)令a=2,b=0f(2)=f(2)*f(0)f(2)≠0f(0)=1(2)x>0,f(x)>0x=0,f(x)>0x0f(0)=f(x)*f(-x)因为f(-x)
移项得f(a+b)-f(b)=f(a)-1设a>0在R上任意取x1和x2使x1=a+bb=x2由a>0知x1>x2那么f(x1)-f(x2)=f(a)-1>0所以f(x1)>f(x2)所以f(x)是R
F(2+2)=F(2)+F(2)-1=F(4)=5即F(2)=3因为是增函数,所以3m^2-m-2
令g(x)=f(x)e^-x;则连续且可导且g(a)=g(b)=0;故存在r使得:g'(r)=0;即[f'(r)e^-r]-f(r)e^-r=0;从而f'(r)=f(r)