R*C卡方 spss
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:07:32
p值0.55>0.05结果不显著说明没有影响再答:理论频数小于5结果不可靠
这个地方的确是需要采用卡方检验的,而卡方检验中没有提供方差检验中的两两比较.如果希望知道两两比较的情况,可以通过对对数logit模型,但是这个做起来比较复杂,一般可以通过计算lambda、gamma等
你有37.5%的期望次数少于5,不能和第一行卡方从自由度看,应该不是4格表,而是R*C表,那就看第二行,也不显著.线性和线性组合:仅用于行变量、列变量都是等级(序次)数据的时候.不知道你的数据是什么情
看显著性看P值,也就是sig.值,P
看第一个Pearson检验结果P值为0.000,得看你的置信水平是多少如果说小于你的置信水平就显著性差异再问:置信水平是多少怎么看?再答:置信水平是你自己给定的一个水平一般都是0.05
在SPSS的回归计算中,你选中变量和自变量,SPSS会自动给出拟合优度R2的~如果是一元回归,在Excel中即可实现:先做散点图,再增加拟合曲线即可,这个过程记得勾选“显示R2和拟合曲线”项~你的数据
对!SPSS回归分析中AdjR方指的是调整R方
Analyze—DescriptiveStatistics-Crosstabs分别放入两个变量,然后在Statistics过程中勾上Chi-squrae,完成后会出现卡方独立性检验结果,其中有Line
方偏小,理论上是不合理的,但很难说是否可行,因为这不是检验回归方程的唯一标准,建议结合F检验和T检验来确定.
就是表示模型拟合的程度logistic回归不是主要依靠这两个指标来衡量模型好坏的我替别人做这类的数据分析蛮多的再问:那时通过什么指标来衡量的呢?
卡方检验是用来证明两个分类变量之间是否存在相关性,相关分析系数是用来证明两个连续性变量之间是否存在相关性的.结果都是看sig的值,若sig<0.05,说明相关显著
Chi-Square就是卡方的意思,因此你的结果的卡方值等于9.910;df指的是自由度;ASYMP.sig就是我们常说的P值,因此P=0.007;一般来说,只要P值小于0.05就认为结果有显著性差异
请对数据合并后,再重新做卡方检验.此资料不满足“卡方检验”的应用条件,需合并分类,使小于5的理论频数(即expectedcount,期望数)小于20%(就是让37%下降到20%以下),最小理论频数(m
说明结果很好.R方是代表百分之多少可以解释你的结果,你的是1,就是你所用所有因变量100%可以解释你的依变量.
这里面有好多种情况:如果理论次数小于5的格子不超过20%(你的表里是0),而且没有理论次数小于1的情况,使用第一行Pearson,表格里p>0.05,所以差异不显著.否则就用似然比卡方检验.还有一个线
卡方值=7.36,p=0.599>0.05,故接受原假设,可认为年级与消费金额之间是独立的,即相关系数r=0.
R值是你这个曲线的你和程度,就是有百分之多少和你样本曲线相似,F值是这个R值的明显程度,所以你只要看R的百分比大小就可以了.从你做出的结果来看,都不合适啊,而且是明显不适合啊,解释变量的系数都不过0.
选择Graph--Scatter/dot..在新的对话框中选择simplescatter,单击define.将两个变量分别拖到Xaxis和Yaxis.单击OK.图形生成了.双击图形,出来一个新的窗体.
当率是按自然顺序的等级分层时,除了可以用一般卡方检验比较各组率的差别外,若要分析率是否随分层变化而变化的趋势,可以用趋势卡方检验.若无单调性趋势,则不需作趋势卡方检验.SPSS中卡方检验:Analyz
p值大于0.05,所以接受原假设.再问:是说,我的假设正确,但是不用具有统计上的显著性是吗?再答:是说明在95%的显著性水平下不显著。再问:貌似大于0.05是拒绝假设吧??再答:是的,大于0.05,是