阶乘公式等于e的n次方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 14:59:03
找收敛域,让后除以前一项,看看就可以
用泰勒展开式:fx=f(a)+f‘(a)/1!(x-a)+f''(a)/2!(x-a)^2+.e^x=f(0)+f'(0)*x/1!+f''(0)x^2/2!+.e=1+1/2!+1/3!+...1/
在X趋于正无穷时e的x次方趋与正无穷而n的阶乘是个常数所以极限是无穷小
首先证明数列bn=a^n/n!在n充分大时单调有界显然在n>a时,bn单调减,且bn>0因此bn存在极限b利用limbn=b=limb(n+1)=limbn*a/n->0得到b=0
证明如下:(n!)/(n^n)=(n/n)*[(n-1)/n]*[(n-2)/n]*...1/nn趋于无穷时1/n趋于0..所以这个极限为0
证明:当n=时,6!=7206³=216所以6!>6³设当n=K时原式成立即K!>K³则当n=K+1时,左边=(K+1)!=(K+1)*K!右边=(K+1)³=
即n^(n/2)=n.(n-1)*2>n.(n-2)*3>n...以此类推,中间为n/2*(n+1)/2>n.所以左式小于右式.
泰勒公式当x=0时的形式:f(x)=f(0)+f'(0)x+f''(0)/2!•x^2,+f'''(0)/3!•x^3+……+f(n)(0)/n!•x^n+f(n+
import java.math.BigInteger; public class Test { &nb
2.4206e+063
n+1)!=(n+1)*n*(n-1)*(n-2)*.*1=(n+1)*n!=n*n!+1*n!=n*n!+n!分配律
比值判别法,后项与前项的比值=e/(1+1/n)^n>1,因此发散.再问:比值等于1啊再答:是比值,不是极限。对任意正整数n,(1+1/n)^n
请写一下过程回答:n的阶乘等于1一直乘到n,n的n次方等于n个n相乘,这个题就相当于是1/n乘2/n……乘1,当n趋近于无穷的时候1/n等于0,.当然,你也可以用诺必达法则做
(2n+1)!=(2n+1)*2n*(2n-1)*(2n-2)...*2*1(2n-1)!=(2n-1)*(2n-2)*(2n-3)...*2*1上式除以下式(2n+1)!/(2n-1)!=(2n+1
详细积分过程, 包括取极限, 以及关键步骤的解释, 请见下图.点击放大,再点击再放大.(稍等几分钟,图已经传上)
Stirling公式
(6-n)!=(6-n)*(5-n)*(4-n)*(3-n)*(2-n)...*2*1(5-n)!=(5-n)*(4-n)*(3-n)...*2*1上式除以下式(6-n)的阶乘除以(5-n)的阶乘=6
由斯特林逼近n!约等于[√(2nπ)]*(n/e)^n所以约分则原式=lim1/[√(2nπ)]*(1/e)^n分子是√n分母是e^n所以显然极限为0再问:分母怎么是e^n了。。再答:哦,对不起,写倒