r=2cosa极坐标
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 08:28:23
利用极坐标与直角坐标的转化公式pcosa=x,psina=y∵psin²a=2cosa两边同时乘以p∴(psina)²=2pcosa∴普通方程是y²=2x
解析:设直线C1被曲线C2截得的线段长为L则由题意可得直线C1的直角坐标方程为:y=1,而曲线C2的标准方程为x²+y²=4,它表示圆心在原点半径为2的圆结合草图易知圆心(原点)到
第一题:y=2第二题:2x+5y=4第三题:x的平方+y的平方=100
同乘以“ρ”:ρ²=2ρcosα+6ρsinα=>x²+x²=2x+6y=>x²+y²-2x-6y=0
x=pcosay=psina所以两边都乘以p.则p*p=2pcosa-4psina.化简:的平方+的平方=5.是个圆,半径是跟号五,圆心坐标是(1,-2).
(1)直线l:y=x(x>0)4cosa=3sinatga=4/3cosa=3/5sina=4/5P(12/5,12/5)(2)直线l:x-y=0点P到直线l的距离=|4cosa-3sina|/根号2
p=根号2(cosa+sina),即p^2=根号2(cosa+sina)p写成一般方程为x^2+y^2=根号2x+根号2y.写成标准形式,得出坐标(根号2/2,根号2/2)点P(1,负根号3)位于单位
p²-p(sina+cosa)+sinacosa=0(p-sina)(p-cosa)=0得p=sina,或p=cosa化成直角坐标方程即为:x²+y²=y,或x²
了解极坐标的含义,并且知道双曲线大致图形,不难发现由于双曲线上下对称所以只要算从极点到方程上一点p=3即可解得直线方程a=pi/2注:pi是圆周率
=1+cosθ=1+2cos²(θ/2)-1=2cos²(θ/2)再问:是直角坐标系方程。再答:r=1+cosθr=1+x/rr^2=r+xx^2+y^2=√(x^2+y^2)+x
因为sina=2/pcosa=-p/10所以sin^a=(2/P)^cos^a=(p/10)^所以(sin^a+cos^a)=(2/P)^+(p/10)^所以(2/P)^+(p/10)^=1以上的^是
证明:(1+sinα+cosα)+2sinαcosα=(1+sinα+cosα)+2sinαcosα=(sinα+cosα)+(sinα)^+(cosα)^+2sinαcosα=(sinα+cosα)
把不带系数的两者写作三角函数psina、pcosa(原题中p=8)注:两者平方和必为正数,否则定义域为空根号(x-8)=psina=8sina;根号(8-x)=8cosa;以下略8、m>1,a&
/>根据点的极坐标化为直角坐标的公式:ρ²=x²+y²,ρcosθ=x,ρsinθ=y.∵p=2/(1-cosa)∴p(1-cosa)=2∴p=2+pcosa即√[x
π/2由ρ=cosθ-sinθ,x=ρ*cosθ,y=ρ*sinθ可得:x/ρ-y/ρ=ρ即x-y=ρ²又有x²+y²=ρ²,联立两式,可得:x²-x
(x^2+y^2)^2=a^2*(x^2-y^2)
因为当θ超过π/2的时候2acosθ是一个负值(假定a>0)那么负的长度就应该反向画出!、比如(π,-2a),-2a的落点在右边一个圆的最右端那个点!你的错误在于:把直角坐标和极坐标搞混淆了,认为(π
x=ρcosθy=ρsinθ所以有方程组ρcosθ=(cosa/2)^2ρsinθ=sina/2消元得极坐标方程:ρcosθ+(ρsinθ)^2=1如果是填空填这个就可以了求根公式可知标准方程
参数方程x=2cosa,y=2+2sina,消去参数得x^2+(y-2)^2=4,展开得x^2+y^2=4y,把x=ρcosθ,y=ρsinθ代入上式就得到极坐标方程ρ^2=4ρsinθ.ρ=0只表示