随机变量 E(x)=2 则E(ax-b)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:02:44
注意E(x^2)和DX均为常数D(aX+E(x^2)-DX)=DaX=a²DX
E(X+2)²=E(X²+4X+4)=EX²+4EX+4EX²=DX+(EX)²=5+4=9E(X+2)²=9+4*2+4=21
E(X)=1Ee^(-2x)=∫(0~无穷)e^(-2x)e^(-x)dx=-e^(-3x)/3|(0~无穷)=1/31+1/3=4/3再问:期望的定义式不是E(X)=∫xf(x)dx,f(x)为密度
∵D(X)=E(X^2)-E(X)^2∴E(X)^2=8-4=4E(X)=2ps:多记公式对统计学习有很重要的帮助.
1A2B3B4C5A6D78B9B10B11A12B13A14A15A16D17A18A19C20
E(X)已经是一个数,它的期望还是它本身E(X)
X服从泊松分布P(λ)所以P{X=1}=P{X=2}λe^(-λ)=λ^2e^(-λ)/2λ=2所以EX=λ=2
根据二项分布的期望公式Eξ=xyE(2ξ+4)=2·Eξ+4=2xy+4
解服从二项分布∴EX=np=3*2/3=2
E(x)=1/2D(x)=1/4E(X^2)=D(x)+E^2(x)=1/2如有意见,欢迎讨论,共同学习;如有帮助,请选为满意回答!
/>∵X服从参数为1的指数分布,∴X的概率密度函数f(x)=e-x,x>00,x≤0,且EX=1,DX=1,∴Ee-2x=∫+∞0e-2x•e-xdx=-13e-3x|+∞0=13,于是:E(X+e-
Cov(X,X)=DX=σ^2Cov(X,Y)=Cov(X,aX+b)=Cov(X,aX)+Cov(X,b)=aDX+0=aσ^2Cov(Y,Y)=D(aX+b)=(a^2)(σ^2)协方差矩阵为:|
f(x)=0.5e^xx≤00.5e^(-x)x>0可见f(x)是偶函数①E(2X)=2EX=2∫Rxf(x)dx=2∫【-∞,0】0.5*x*e^xdx+2∫【0,+∞】0.5*x*e^(-x)dx
因为$X\simP(2)$,所以,$\E{X}=2$,$\Var{X}=2$.所以$\E{X^2}=\Var{X}+\E{X}^2=2+2^2=6$,建议好好看看书上的随机变量数字特征这一章,因为$\
E(xy)=E(x)×E(y)=1×3=3
答案是D因为常数的期望是它本身E(X)存在设它为常数CE(E(C))=E(C)=C也就是E(X)
若独立则不相关,不相关不一定独立.设A,B独立P(A)P(B)=P(AB)cov(x,y)=E(XY)-E(X)E(Y)=E(X)E(Y)-E(X)E(Y)=0,因此A,B不相关.反之,A,B不相关c
对密度积分得到分布函数F(+OO)∫f(x)dx(上限为无穷下限为0)=-2/a*e^(-ax)=2/a=1,所以a=2然后特征函数就是E(e^itx)=∫e^itx*f(x)dx=∫2e^(it-2