随机变量 X λ Y u 且相互独立 计算P{X

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:51:34
随机变量 X λ Y u 且相互独立 计算P{X
设两个随机变量X,Y相互独立,且都服从均值为0、方差为12

令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y

概率论方差计算设随机变量X与Y相互独立,且D(X)=1,D(Y)=2,求D(X-Y).

回答:设Z=-Y,于是D(Z)=D(-Y),D(X-Y)=D(X)+D(-Y)=D(X)+D(Z)=1+2=3.

设随机变量X与Y均服从参数为λ的指数分布,且X与Y相互独立,求Z=X+Y的密度函数

fx(x)=λe^(-λx)f(x,y)=λ²e^(-λx-λy)z-x>0,z>xfZ(z)=∫(-∞,+∞)f(x,z-x)dx=∫(-∞,+∞)f(x,z-x)dx=∫(0,z)λ&#

设随机变量X和Y相互独立,且都服从正态分布N(0,1),计算概率:P(X*X+Y*Y

随机变量x,y相互独立都服从N(0,1)则f(x,y)=fX(x)fY(y)=1/(2π)e^(-x²-y²)P(X^2+Y^2

已知随机变量x和y相互独立且均服从参数λ=2的指数分布,问,随机变量...

x和y相互独立且均服从参数λ=2的指数分布--->F(x,y)=F(x)*F(y)=(1-e^(-2x))(1-e^(-2y))=1-e^(-2x)-e^(-2y)+e^(-2x-2y)

设随机变量x~N(0,1),N(1,2),且x,y相互独立,则x-2y=?

首先X-2Y还是正态分布而E(X-2Y)=E(X)-2E(Y)=0-2=-2D(X-2Y)=D(X)+(-2)²D(Y)=1+4×2=9所以X-2YN(-2,9)

设随机变量X~N(-1,22),N(-2,32),且X,Y相互独立,则X-Y~()

正态分布添加剂,XY也是正常E(XY)=EX-EY=1D(XY)=DX+DY=13XYN(113)

2.设随机变量X与Y相互独立且具有同一分布律:

分布律:Z01P1/43/4V01P3/41/4U01P3/41/4如果这就是你想要的回答

设随机变量X~N(-3,1),(2,4),且X与Y相互独立,则X-2Y+11~

E(X-2Y+11)=(-3-2*2+11)=4D(X-2Y+11)=D(X)+4D(Y)=17N(4,17)

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

设随机变量X~N(-1,2),N(2,7),且X与Y相互独立,则D(X+Y)=

解;N(-1,2),N(2,7)所以DX=2,DY=7因为x与y相互独立所以D(X+Y)=DX+DY=2+7=9

设随机变量X~N(-1 4),N(-2 9) ,且XY相互独立,则x-y~( )

正态分布具有可加性,X-Y也是正态分布E(X-Y)=EX-EY=1D(X-Y)=DX+DY=13X-Y~N(1,13)

设随机变量X和Y相互独立,且X~N(3,4),(2,9),则Z=3X-Y~

3X-Y还是正态分布利用公式E(aX+bY)=+aE(X)+bE(Y)D(aX+bY)=+a²D(X)+b²D(Y)

顺便帮忙证明下:设X和Y是相互独立的随机变量,且X~π(λ1),π(λ2),证明Z=X+Y~

是X~π(λ)泊松分布证明:P{X=k}=λ^k*e^(-λ)/k!π(μ)P{Y=k}=μ^k*e^(-μ)/k!Z=X+YP{Z=k}=∑(i=0,...k)P{X=i}*P{Y=k-i}=∑(i

随机变量X,Y相互独立,概率密度f(x)

f(x,y)=1/4*exp{-x-y/4}(x>0,y>0)f(x,y)=0(其他)

设随机变量X与Y相互独立且分别服从参数λ=2和λ=1的指数分布 求P{X+Y≤1}

求出XY联合概率密度以后,在坐标轴XY上画出Y=-X-1的线,再根据X和Y的取值范围ie,即X>0,Y>0,把联合概率密度在围成的三角形内进行2重积分,即可算出最后答案,

设随机变量X与Y相互独立,且其概率密度分别为

fx(x)=(1)2x0<x<1\x0d(2)0其他\x0dfy(y)=(1)e的-y次方y0\x0d(2)0y≤0,\x0d则X与Y的联合概率密度f(x,y)=\x0de的-y次方打不出

连续型随机变量X,Y相互独立且同一分布,证明P{X

设密度函数为f(x),分布函数为F(x)P(X