随机变量X~N(u,9),Y~N(u,25),记p1=P

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:24:42
随机变量X~N(u,9),Y~N(u,25),记p1=P
设随机变量 N(-1,2),N(1,2),U=2X+Y,V=2X-Y,Cov(U,V)

Cov(U,V)=cov(2X+Y,2X-Y)=4cov(x,x)-cov(y,y)+cov(2x,-y)+cov(2x,y)=4D(x)-D(y)=8-2=6如有意见,欢迎讨论,共同学习;如有帮助,

设随机变量X和Y均服从正态分布X~N(u,4²),N(u,5²),记p1=P(X<u-4),p2=P

应该是A;因为p1是均值减一倍标准差的左尾概率,p2是均值加一倍标准差的右尾概率,你查表就知道p1=p2=100%/2-68.3%/2=15.85%

随机变量X~N(0,1),Y~U(0,1),Z~(5,0.5)且X、Y、Z相互独立,求随机变量U=(2X+3Y)(4Z-

U=(2X+3Y)(4Z-1)=8XZ-2X+12YZ-3YE(U)=8E(X)E(Z)-2E(X)+12E(Y)E(Z)-3E(Y)//:E(X)=0,E(Y)=0.5,E(Z)=5;//:N(5,

证明随机变量的独立性X,Y独立同分布,服从标准正态分布N(0,1).令U=X^2+Y^2,V=X/Y求证U,V相互独立.

当s>0时做变换s=x^2+y^2,t=x/y,求其反函数.反函数有两支:x=t*sqrt(s/(1+t^2)),y=sqrt(s/(1+t^2))以及x=-t*sqrt(s/(1+t^2)),y=-

随机变量X,Y相互独立,N(μ,σ^2),U(-π,π),求Z=X+Y的概率密度

用卷积公式,提示一下,那两个分布不太好打啊

设随机变量X和Y相互独立,N(μ,σ^2),U(-π,π),求X+Y的分布.

把分布密度写出来,用卷积公式. 我算到下面这里也不会了:

概率论与数理统计题目:设随机变量X~N(u,σ^2),求E|x-u|^k

如果k是奇数,E|x-u|^k=√(2/π)*(p-1)*(p-3)*...*3*1*σ^p如果k是偶数,E|x-u|^k=(p-1)*(p-3)*...*3*1*σ^p再问:可以更为详细一点吗?有些

设随机变量X和Y相互独立,服从正态分布N(0,2^2),记U=3X+2Y,V=3X-2Y,求U与V的相关系数P

E(X)=E(Y)=0,D(X)=D(Y)=4,E(X^2)=D(X)+[E(x)]^2=D(X)=4,E(Y^2)=4;E(U)=3E(X)+2E(Y)=0,E(V)=3E(X)-2E(Y)=0;D

随机变量X~N(1,9)随机变量Y~N(5,4²),且X与Y相互独立,求随机变量z=5x-y的分布及概率密度函

说下思路吧,过程难以打出来...X与Y相互独立,所以X与Y的联合密度函数等于X的密度函数与Y的密度函数的乘积.在5x-y

设随机变量X~N(-1 4),N(-2 9) ,且XY相互独立,则x-y~( )

正态分布具有可加性,X-Y也是正态分布E(X-Y)=EX-EY=1D(X-Y)=DX+DY=13X-Y~N(1,13)

设随机变量X和Y相互独立,且X~N(3,4),(2,9),则Z=3X-Y~

3X-Y还是正态分布利用公式E(aX+bY)=+aE(X)+bE(Y)D(aX+bY)=+a²D(X)+b²D(Y)

设随机变量X服从正态分布N(u,16),Y服从正态分布N(u,25).记p=P(X≦u-4),q=P(Y≧u+5),则p

应该是相等的再问:求计算过程再答:计算过程,,,u是对称轴,X的西格玛是4,所以,p表示小于u-西格玛的概率。同理,q表示大于u+西格玛的概率。每一个正态曲线的大于u+西格玛,u+2西格玛,u+3西格

设随机变量X和Y独立同分布,记U=X-Y,V=X+Y,则随机变量U与V必然(  )

∵cov(U,V)=E(U-EU)(V-EV)=E(X-Y-E(X-Y))E(X+Y-E(X+Y))=E(X-EX-Y+EY)E(X-EX+Y-EY)=E(X-EX)2-E(Y-EY)2=DX-DY由

随机变量X~N(0,1),求下列随机变量Y=X^2的概率密度函数

思路是:先求解Y的分布函数,用定义求:即FY(y)=Py(Y=0,否则为零变形一下得到;FY(y)=PX(-y^0.5=

若随机变量X~U(1,4),N(4,1),D(X-Y)=1,则相关系数为多少

D(x-y)=D(x)+D(y)-2cov(x,y)=1cov(x,y)=2pxy=cov(x,y)/√D(x)D(Y)=1如有意见,欢迎讨论,共同学习;如有帮助,

设随机变量X~U(0,π),求:随机变量 Y=2X+1的密度函数...

X~U(0,π)(均匀分布),x的密度函数为1/π,x∈(0,π)时,其它均为0X~U(0,π),Y=2X+1∈(1,2π+1)的密度函数为1/(2π),x∈(1,2π+1)时,其它均为0【【不清楚,

设随机变量X~N(u,σ^2),求Y=2X+5的概率密度

N(u,σ²),即X的密度函数为fX(x)=1/(√2π*σ)*e^[-(x-u)²/(2σ²)]那么Y=2X+5~N(2u+5,4σ^2)所以Y的概率密度为fY(y)=

随机变量X~U(0,1),

随机变量X服从区间(0,1)上的均匀分布