随机变量X在(0,1)上服从均匀分布,求Y=-2lnX的概率密度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:07:49
随机变量X在(0,1)上服从均匀分布,求Y=-2lnX的概率密度
设二维随机变量(X,Y)在区域G={(x,y)|0≦x≦1,x²≦y≦x}上服从均匀分布,求

由于∫(x^2,x)∫(0,1)f(x,y)dxdy=1,且f(x,y)是常数,算出f(x,y)=6,边缘密度f(x)=∫(x^2,x)6dy=6x^2-6x;边缘密度f(y)=∫(y^0.5,y)6

已知随机变量X,Y相互独立,N(1,9),Y在区间[0,4]上服从均匀分布,则E(X)=?,D(Y)=?,D(X+3Y)

1,4/3,15,其中运用公式相互独立的随机变量之和D(X+Y)=D(X)+D(Y).对于均匀分布D(x)=(b-a)²/12

假设随机变量X服从参数为2的指数分布,证明:随机变量Y=1-e^(-2X)在区间(0,1)上服从均匀分布.

事实上,任意随机变量的分布函数(CDF)均服从(0,1)上均匀分布. 补充.Y就是X的累积分布函数,累积分布函数的取值范围只能是(0,1).

设随机变量X在[0,1]上服从均匀分布,Y在[2,4]上服从均匀分布,且X与Y相互独立,则D(XY)=

均匀分布的期望方差公式都记得吧,套用一下就行了EX=1/2EY=3X与Y相互独立所以EXY=EXEY=3/2E(XY)²=∫(0到1)dx∫(2到4)1/2x²y²dy=28/

设随机变量X,Y相互独立,X服从λ=5的指数分布,Y在[0,2]上服从均匀分布,求概率P(X≥Y)

XY相互独立,那么XY联合分布密度f(x,y)=fx(x)*fy(y)fx(x)=5e^(-5x)fy(y)=1/2P(X>=Y)=∫∫f(x,y)dxdy=∫(0,2)1/2∫(y,∞)5*e^(-

设二维随机变量(X,Y)在区域D上服从均匀分布,其中D:0

因为二维随机变量(X,Y)在区域D上服从均匀分布,所以当(x,y)∈D时,概率密度f(x,y)为区域D的面积的倒数,当(x,y)不在D内时,f(x,y)为0因为D:0

大学概率论试题答案:设随机变量X在区间(1,2)上服从均匀分布试求

回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1

设随机变量X服从(0,1)区间上的均匀分布,则随机变量Y=X²的密度函数

用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0

设随机变量X在(0,1)上服从均匀分布,(1)求Y等于绝对值X的概率密度.

Y=|X|因为X(0,1)所以Y=|X|就是Y=X所以概率密度fy(y)=1Y(0,1)其他0

设随机变量(x,y)在以点(0,1),(1,0)(1,1)为顶点的三角形区域D上服从均匀分布,求D(x)

D(x)=Ex²-(Ex)²均匀分布,概率密度是面积的倒数:f(x,y)=1/s=2f(x)=∫(1-x,1)f(x,y)dy=∫(1-x,1)2dy=2xEx=∫(0,1)xf(

设随机变量x在区间[0,4]上服从均匀分布,则p{1<X<3}=?

若连续型随机变量X的概率密度为f(x)=1/b-a,(a≤x≤b);f(x)=0,(其他);则X服从区间[a,b]上的均与分布,其分布函数为F(x)=x-a/b-a,(a≤x≤b);0,(xb);若X

随机变量X在(-1,2)上服从均匀分布,求随机变量Y=|X|/X的数学期望E(Y)和方差D(Y).

Y=1当x大于0概率2/3Y=-1当x小于0概率1/3E(Y)=1*2/3+(-1)*1/3=1/3D(Y)=E(Y^2)-E(Y)^2=1-1/9=8/9

设随机变量x服从【0,1】上均匀分布,求Y=e^x的概率密度!

FY(y)=P{Y小于等于y}=P{e*X小于等于y}=P{X小于等于lny}=FX(lny)fY(y)=fX(lny)(1/y)所以当0

设随机变量X在(0 1)上服从均匀分布 随机变量Y在(0 2)上俯冲均匀分布 且X与Y相互独立 求Z=Y-2X的分布函数

先求fx=1fy=1/2然后根据z<-2-2≤z<00≤z<2z≥2分别进行进行积分求F(z)再根据F(z)求密度函数fz.