随机变量X在区间(a,b)上服从均匀分布,则X的概率密度函数为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:26:32
(1)f(x)=1/(b-a)=1/4P{-0.5
回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1
F(X)=(X-a)/(b-a)f(X)=F'(X)=1/(b-a)E(X)=∫xf(x)dx=∫x/(b-a)dx=x^2/2|(a,b)/(b-a)=(b^2-a^2)/2(b-a)=(a+b)/
X服从均匀分布,即X~U(a,b),则E(X)=(a+b)/2,D(X)=(b-a)²/12证明如下:设连续型随机变量X~U(a,b)那么其分布函数F(x)=(x-a)/(b-a),a≤x≤
密度函数:f(x)=1/(b-a)[a,b]f(x)=0其它x数学期望Ex=∫(a,b)x/(b-a)dx=0.5/(b-a)(b^2-a^2)=(a+b)/2Ex=(a+b)/2方差Dx=∫(a,b
h(x)=f(x)g(x)a
f(x)=1/(b-a);a
你要求的是密切区间吧?区间是[2,3]
f(x)=1/(b-a)P{X(2a+b)/3)f(x)dx=1/3
/>构造辅助函数:F(x)=xf(x),则:F(x)在[a,b]连续,在(a,b)可导,从而F(x)满足拉格朗日中值定理,则:在(a,b)内至少存在一点ξ,使得:F(b)-F(a)b-a=F′(ξ),
确定没抄错题?cotb(sin£1)^2f'(£2)?看起来不是很协调啊,如果你确定没抄错,我就试试看.不过我希望楼主能提供一份word公式编辑器版本的式子,这个样子的感觉有些不靠谱···再问:已经上
根据题意可知f(x)>=0,f(x)在[a,b]积分为1.所以[a,b]应为[0,π/2]或者[π/2,π]这样的区间,加上2kπ的函数周期(避开f(x)
P(Y=1)=P(X>0)=2/3,P(Y=0)=P(X=0)=0,P(Y=-1)=P(X
饿……上学期概率论作业题的简化版……我做的那道作业题没有告诉X是连续型的,也可以证明这两个结论,我写一下老师讲的标准方法.①a≤X≤b,求期望E有保序性,这是个定理.所以E(a)≤E(X)≤E(b),
你题目是否抄错了?应该有f(x)在[a,b]上连续,且在(a,b)上可导,才能选D的.F(x)是带有f(x)的复合函数的积分,F'(x)=(x-t)f(x)-C,其中C为常数.F(x)一定连续且可导,
0.52x+(118-x)*0.33=53
在[a,c]递减,则x属于[a,c]时f(x)>=f(c)恒成立在[c,b]递增,则x属于[c,b]时f(x)>=f(c)恒成立所以最小值就是f(c)画个图看看咯,随便画一下就好.