随机变量X在区间(a,b)上服从均匀分布,则X的概率密度函数为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:26:32
随机变量X在区间(a,b)上服从均匀分布,则X的概率密度函数为
大学概率论试题答案:设随机变量X在区间(1,2)上服从均匀分布试求

回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1

设随机变量x服从区间[a b]上的均匀分布 写出其概率密度函数f(x),并求其数学期望Ex,方差Dx.

F(X)=(X-a)/(b-a)f(X)=F'(X)=1/(b-a)E(X)=∫xf(x)dx=∫x/(b-a)dx=x^2/2|(a,b)/(b-a)=(b^2-a^2)/2(b-a)=(a+b)/

设随机变量x在区间a b上服从均匀分布,求x得数学期望ex和方差dx!

X服从均匀分布,即X~U(a,b),则E(X)=(a+b)/2,D(X)=(b-a)²/12证明如下:设连续型随机变量X~U(a,b)那么其分布函数F(x)=(x-a)/(b-a),a≤x≤

设随机变量x在区间a b上服从均匀分布,求x得数学期望ex和方差dx

密度函数:f(x)=1/(b-a)[a,b]f(x)=0其它x数学期望Ex=∫(a,b)x/(b-a)dx=0.5/(b-a)(b^2-a^2)=(a+b)/2Ex=(a+b)/2方差Dx=∫(a,b

设f(x)在区间[a,b]上连续,在(a,b)可导,

/>构造辅助函数:F(x)=xf(x),则:F(x)在[a,b]连续,在(a,b)可导,从而F(x)满足拉格朗日中值定理,则:在(a,b)内至少存在一点ξ,使得:F(b)-F(a)b-a=F′(ξ),

证明题:设f(x)在闭区间[a,b]上连续在开区间(a,b)内可导……

确定没抄错题?cotb(sin£1)^2f'(£2)?看起来不是很协调啊,如果你确定没抄错,我就试试看.不过我希望楼主能提供一份word公式编辑器版本的式子,这个样子的感觉有些不靠谱···再问:已经上

设函数f (x)在[a,b]上等于sin x,在此区间外等于零,若f (x)可以作为某连续型随机变量的概率密度则区间

根据题意可知f(x)>=0,f(x)在[a,b]积分为1.所以[a,b]应为[0,π/2]或者[π/2,π]这样的区间,加上2kπ的函数周期(避开f(x)

设连续性随机变量X的一切可能值在区间[a,b]内,其密度函数为f(x),证明:(1)a

饿……上学期概率论作业题的简化版……我做的那道作业题没有告诉X是连续型的,也可以证明这两个结论,我写一下老师讲的标准方法.①a≤X≤b,求期望E有保序性,这是个定理.所以E(a)≤E(X)≤E(b),

f(x)在闭区间a,b 上连续 则F(X)=∫a到x (x-t)f(t)dt在开区间a,b内

你题目是否抄错了?应该有f(x)在[a,b]上连续,且在(a,b)上可导,才能选D的.F(x)是带有f(x)的复合函数的积分,F'(x)=(x-t)f(x)-C,其中C为常数.F(x)一定连续且可导,

已知函数f(x)在区间[a,c]上单调递减,在区间[c,b]单调递增,则f(x)在【a,b】上的最小值为?

在[a,c]递减,则x属于[a,c]时f(x)>=f(c)恒成立在[c,b]递增,则x属于[c,b]时f(x)>=f(c)恒成立所以最小值就是f(c)画个图看看咯,随便画一下就好.