Res(ze^z (z^2-1),-1)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:14:57
Res(ze^z (z^2-1),-1)=
若复数z满足|z+1|^2-|z-i|^2=1,求|z|的最小值

设z=x+yi(x,y为实数)1=|z+1|^2-|z-i|^2=|(x+1)+yi|^2-|x+(y-1)i|^2=(x+1)^2+y^2-[x^2+(y-1)^2]=x^2+2x+1+y^2-(x

已知复数z满足3z+(z-2)i=2z-(1+z)i,求z

设z=a+bi因为3z+(z-2)i=2z-(1+z)i所以3(a+bi)+(a+bi-2)i=2(a+bi)-(1+a+bi)i3a+3bi+ai-b-2i=2a+2bi-i-ai+b(3a-b)+

已知复数z满足|z|+共轨函数z=1-2i,求复数z

设z=x+iy,由条件知道:√(x^2+y^2)+x-iy=1-2i故:√(x^2+y^2)+x=1-y=-2解得:x=-3/2,y=2即z=-3/2+2i

数字信号处理一点疑惑拿一道例题说事.X(z)=z^2/[(z-1/4)(4-z)]用留数法做RES(X(Z)Z^(N-1

n+1>0,才能保证z^(n+1)是在分子上,反之就在分母上,这样零极点就会不同.

已知模(z+1)/z=2 arg[(z+1)/z]=π/3 求z.

则由题意得,(z+1)/z=2(cosπ/3+sinπ/3*i),设z=a+bi(a+bi+1)/a+bi=2(cosπ/3+sinπ/3*i)a+1+bi=(a-sqrt(3))+(sqrt(3)a

虚数Z满足Z的模=1,Z^2+2Z+1/Z

虚数z满足|z|=1,z²+2z+1/z

已知复数z满足z+1/z∈R,|z-2|=2,求z

设z=a+bi,a,b是实数|z-2|^2=(a-2)^2+b^2=41/z=1/(a+bi)=(a-bi)/(a^2-b^2)z+1/z=[a+a/(a^2-b^2)]+[b-b/(a^2-b^2)

设复数z满足z 1/z=1/2,求z

设z=a+bi,1/(a+bi)=(a-bi)/(a^2+b^2)=1/2,显然b=0,a/(a^2+b^2)=1/2;a=2.得z=2

z的模=1,Z不等于正负i,求证z/(1+z^2)属于R

|z|=1且z≠±i,则可设z=cosθ+isinθz/(1+z²)=(cosθ+isinθ)/[1+(cosθ+isinθ)²]=(cosθ+isinθ)/(1+cos²

求积分计算f{|z|=pi}(z/(z+1))*(e^(2/(z+1)))dz

f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|

一道复变函数题:Res[z^3*e(-1/z),0]=?

你那个表达式写清楚些(-1/z)是e的指数吧,那3*e(-1/z)是z的指数函数只是3是?

若复数z满足|z|=1,求证z/1+z^2属于R

若复数z满足|z|=1,求证z/1+z^2属于R证明:令z=cost+isint=(cost,sint)z/1+z^2=cost+isint/1+cos^2t-sin^t+2sintcost=cost

复变函数 求Res[(e^z-1)/z^6,0] 还有判断敛散性的两题

Res[(e^z-1)/z^6,0]=1/5!=1/120,(这个根据洛朗级数求较简单)第一,二都绝对收敛再问:留数那可以写出详过程吗?再答:针对这个题而言,用洛朗展式来求奇点的留数是比较容易得先来看

已知模[(z+1)/z]=2 arg[(z+1)/z]=π/3 求z.

因为模[(z+1)/z]=2arg[(z+1)/z]=π/3所以(z+1)/z=2(cosπ/3+isinπ/3)1+1/z=1+√3i1/z=√3iz=1/[√3i]=-√3/3i

已知|z|2+(z+.z

设z=x+yi(x,y∈R),由|z|2+(z+.z)i=3−i2+i,得x2+y2+2xi=(3−i)(2−1)(2+i)(2−i)=1−i,∴x2+y2=12x=−1,解得x=−12y=±32.∴

复数z满足(z-1)(2-z)=5

复数z满足(z-1)(2-z)=52z-2-z^2+z=5这里z²;相当于i²=-1则3z=5+2-1=63z=6z=2

若/Z/=1且z为虚数,求证z/(1-z^2)为纯虚数

证明:设Z=a+bi,(其中a∈R,b∈R),则由|Z|=1,得a^2+b^2=1,则Z/(1-Z^2)=(a+bi)/[1-(a^2-b^2+2abi)]=(a+bi)/(2*b^2-2abi)=(

虚数z满足绝对值z=1,且z^2+2z+1/z

z=cost+isintcos2t+isin2t+2cost+2isint+cost-isint

若复数z满足,z*z拔+(1-2i)*z+(1+2i)z拔

设z=a+bi,则:z拔=a-bi.则:z*z拔=(a+bi)(a-bi)=a²+b²(1-2i)z+(1+2i)z拔=(z+z拔)+2i(z拔-z)=2a+4b则:a²