Res(ze^z (z^2-1),-1)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:14:57
设z=x+yi(x,y为实数)1=|z+1|^2-|z-i|^2=|(x+1)+yi|^2-|x+(y-1)i|^2=(x+1)^2+y^2-[x^2+(y-1)^2]=x^2+2x+1+y^2-(x
设z=a+bi因为3z+(z-2)i=2z-(1+z)i所以3(a+bi)+(a+bi-2)i=2(a+bi)-(1+a+bi)i3a+3bi+ai-b-2i=2a+2bi-i-ai+b(3a-b)+
设z=x+iy,由条件知道:√(x^2+y^2)+x-iy=1-2i故:√(x^2+y^2)+x=1-y=-2解得:x=-3/2,y=2即z=-3/2+2i
n+1>0,才能保证z^(n+1)是在分子上,反之就在分母上,这样零极点就会不同.
则由题意得,(z+1)/z=2(cosπ/3+sinπ/3*i),设z=a+bi(a+bi+1)/a+bi=2(cosπ/3+sinπ/3*i)a+1+bi=(a-sqrt(3))+(sqrt(3)a
虚数z满足|z|=1,z²+2z+1/z
设z=a+bi,a,b是实数|z-2|^2=(a-2)^2+b^2=41/z=1/(a+bi)=(a-bi)/(a^2-b^2)z+1/z=[a+a/(a^2-b^2)]+[b-b/(a^2-b^2)
设z=yi原式=yi/1+y——i²=-1
设z=a+bi,1/(a+bi)=(a-bi)/(a^2+b^2)=1/2,显然b=0,a/(a^2+b^2)=1/2;a=2.得z=2
|z|=1且z≠±i,则可设z=cosθ+isinθz/(1+z²)=(cosθ+isinθ)/[1+(cosθ+isinθ)²]=(cosθ+isinθ)/(1+cos²
f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|
你那个表达式写清楚些(-1/z)是e的指数吧,那3*e(-1/z)是z的指数函数只是3是?
若复数z满足|z|=1,求证z/1+z^2属于R证明:令z=cost+isint=(cost,sint)z/1+z^2=cost+isint/1+cos^2t-sin^t+2sintcost=cost
Res[(e^z-1)/z^6,0]=1/5!=1/120,(这个根据洛朗级数求较简单)第一,二都绝对收敛再问:留数那可以写出详过程吗?再答:针对这个题而言,用洛朗展式来求奇点的留数是比较容易得先来看
因为模[(z+1)/z]=2arg[(z+1)/z]=π/3所以(z+1)/z=2(cosπ/3+isinπ/3)1+1/z=1+√3i1/z=√3iz=1/[√3i]=-√3/3i
设z=x+yi(x,y∈R),由|z|2+(z+.z)i=3−i2+i,得x2+y2+2xi=(3−i)(2−1)(2+i)(2−i)=1−i,∴x2+y2=12x=−1,解得x=−12y=±32.∴
复数z满足(z-1)(2-z)=52z-2-z^2+z=5这里z²;相当于i²=-1则3z=5+2-1=63z=6z=2
证明:设Z=a+bi,(其中a∈R,b∈R),则由|Z|=1,得a^2+b^2=1,则Z/(1-Z^2)=(a+bi)/[1-(a^2-b^2+2abi)]=(a+bi)/(2*b^2-2abi)=(
z=cost+isintcos2t+isin2t+2cost+2isint+cost-isint
设z=a+bi,则:z拔=a-bi.则:z*z拔=(a+bi)(a-bi)=a²+b²(1-2i)z+(1+2i)z拔=(z+z拔)+2i(z拔-z)=2a+4b则:a²