rutu,AB为圆O直径,CD垂直AB与P,直线BF与AD的延长线交于F
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:10:25
连接AD,因为AB为直径,所以∠ADB=90度AD⊥CB△ACD∽△ADBAD/BD=CD/ADAD=√3(舍负)AB=√[(√3)²+3²]=2√3
1,∵E是弧ADB的中点,AB是圆O的直径∴OE⊥AB∴DC∥OE∴∠OEC=∠ECD∵△OEC是等腰三角形∴∠OEC=∠OCE∴∠OCE=∠ECD∴CE平分∠OCD2,∵∠BAC=∠HCB=30,∠
取CD的中点F,则OF=AE=2,且OF⊥CD,CF=3/2所以OC^2=2^2+(3/2)^2=25/4,OC=5/2所以直径等于5.
(1)连接ac.co∴co=4∵cd⊥ab∴ch=hd=2根号3在△cho中,co^2=ho^2+ch^2∴ho=2∴∠coh=60°∵co=ao∴△cao为正三角形∴∠bac=60°(2)∵e为弧a
有两个答案:22cm或8cm先画图:一种是ab和cd在直径的同侧;另一种是ab和cd分别在直径的两侧.但只要解决ab和cd与直径的距离,就解出来了.连接ao,co,再连接o和ab的中点e,cd的中点f
因为OC=OE,所以∠OCE=∠OEC,又因为E是弧ADB的中点,且AB是直径,所以∠AOE=∠BOE=90°因为CD⊥AB所以∠BHD=∠BOD=90°所以OE//CD所以∠OEC=∠ECD所以∠E
连OC,因为CD⊥AB所以CH=CD/2=√3/2在直角三角形OCH中,由勾股定理,得,OH^2=OC^2-CH^2=1-3/4=1/4解得OH=1/2所以OH=CO/2所以∠COA=60°,因为OA
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
连接圆心垂直CD,A到直线距离加B到直线距离之和为圆心到直线距离的两倍(中位线定理),连接圆心和D,则圆心到直线距离平方等于半径平方减去半铉长平方=25-16=9,圆心到直线距离等于3,所以A到CD距
圆半径r=ab/2=4/2=2CD为弧AB的三等分点,则∠AOC=∠COD=∠DOB=60∠AOD=120S(ACD)=S(AOC)+S(COD)-S(AOD)=r^2sin60/2+r^2*sin6
解题思路:利用圆心角、弧、弦、弦心距的关系定理求解。解题过程:呵呵,题目是这样的吧?如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想弧AD与弧CB之间的关系,并证明你的猜想。过程请见图
证明:过O作OG⊥CD,由垂径定理可知OG垂直平分CD,则CG=DG,∵CE⊥CD,DF⊥CD,OG⊥CD,∴CE∥OG∥DF,∵CG=DG,∴OE=OF,∵OA=OB,∴AE=BF.再问:为什么OE
解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,
因为MN过圆心,且经过AB中点,所以MN垂直于AB,所以MN垂直于CD,所以MN与CD交于CD的中点,因此F为CD中点.因为MN垂直于AB和CD,所以M,N为狐AB,CD的中点,即狐AM=BM,CN=
设:o到CD的距离为d,因为圆的直径AB,垂直于弦CD,由垂径定理知:CH=根3/2,由CH²=AH.BH,即3/4=(1-d)(1+d),即d²=1-3/4=1/4,.解得d=1
1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的
三角形BCD为直角三角形,则BC=根号20;COSB=BD/BC=2/根号20;三角形ABC为直角三角形,COSB=BC/AB=根号20/AB=2/根号20;解得AB=10;半径R=AB/2=5AC=
连接OE∵∠PEF=90°-∠OEB=90°-∠OBE=∠OFB=∠EFP∴PF=PE=4由勾股定理 PO²=PE²+OE²,得PO=5OF=PO-PF=1,&