s1是等差数列an的前N项和,已知s9=18,sn=240

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:37:46
s1是等差数列an的前N项和,已知s9=18,sn=240
已知等差数列an的公差为2,前n项和为sn,且s1,s2,s4成等比数列

1、S1=a1S2=2a1+2S4=4a1+12所以S2^2=S1*S4即(2a1+2)^2=a1(4a1+12)即解得a1=1所以an=1+(n-1)*2=2n-12、bn={(-1)^(n-1)}

设Sn是公差不为0的等差数列an地前n项和且S1,S2,S4成等比数列,则a1/a2等于

先给出答案:a1/a2=1/3序号第n项前n项和Sn第1项:aa第2项:a+d2a+d第3项:a+2d3a+3d第4项:a+3d4a+6dS1:S2=S2:S4或者(S2)^2==S1*S4(2a+d

若Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列:

设公差为d由题意,S1=a1S2=2a1+dS4=4a1+6da1*(4a1+6d)=(2a1+d)^2d^2-2a1*d=0d(d-2a1)=0d不等于0所以d=2a1(1)公比q=S2/S1=(2

等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列

(Ⅰ)∵等比数列{an}的前n项和为Sn,S1,S3,S2成等差数列,∴2(a1+a1q+a1q2)=a1+a1+a1q,解得q=-12或q=0(舍).∴q=-12.(Ⅱ)∵a1-a3=3,q=-12

等差数列{An}前n项和为{Sn},且S1,S2,S3成等比数列.

an=a1+(n-1)dS1=a1S2=S1q=a1+a2=2a1+d.1S4=S1q^2=a1+a2+a3+a4=4a1+6d.21式、2式两边都除以a1,得q=2+d/a1,q^2=4+6*(d/

等比数列an前n项和sn满足s1,s3,s2成等差数列,求sn

等比数列{an}中,前n项和为sn,已知S1,S3,S2成等差数列,求{an}的公比Q.已知a1-a3=3,求sn?S1=a1S2=a1(1+q)S3=a1(1+q+q^2)S1,S3,S2成等差数列

等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列

S1=a1S2=a1(1+q)S3=a1(1+q+q^2)S1,S3,S2成等差数列即s3-s1=s2-s31+q+q^2-1=1+q-(1+q+q^2)q^2+q=-q^2q=0或-1/2如果a1-

已知{an}是等差数列,公差d不等于0,且a1 a3 a13成等比数列,sn是{an}的前n项和,(1)求证s1 s2

(a3)^2=a13*a1(a1+2d)^2=(a1+12d)*a1d-2a1=0d=2a1s1=a1s3=3a1+3d=9a1s9=9a1+36d=81a1(s3)^2=s1*s9,所以s1s3s9

若Sn是公差不为0的等差数列an的前n项和,且S1,S2,S4成等比数列,求数列S1,S2,S4的公比

S1=a1S2=a1+a2=2a1+dS4=a1+a2+a3+a4=4a1+6d因为成等比数列,所以S2的平房=S1*S4(2a1+d)的平房=a1(4a1+6d)因为d不得0解得d=2a1所以S2=

在等差数列{an}中,a1=1,Sn是前n项和,且S1,S3,S8成等差数列,求a23+2S23的值(要求详细解答)

an=1+(n-1)d=nd+1-dS1=a1=1S3=a1+a2+a3=3d+3S8=28d+8因为成等差数列所以2S3=S1+S86d+6=28d+9d=-3/22a23=1+22d=-22S23

若Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列.

(Ⅰ)设数列{an}的公差为d,由题意,得S22=S1•S4所以(2a1+d)2=a1(4a1+6d)因为d≠0所以d=2a1故公比q=S2S1=4(Ⅱ)因为S2=4,d=2a1,∴S2=2a1+2a

已知数列{An}的前n项和Sn.已知S1.S3.S2.成等差数列,求{An}的公比q

设公比为q已知S1.S3.S2.成等差数列则S1+S2=2S3即a1+a1+a2=2(a1+a2+a3)a2+2a3=0亦即a1*q+2a1*q^2=0所以1+2q=0解得q=-1/2

等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列,求{an}的公比q

S1+S2=2S3即a1+a1+a2=2(a1+a2+a3)解得2q^2+q=0,q=-1/2等比数列求和公式分2类,一类公比q=1,Sn=na₁第2类公比q≠1,Sn=a₁(

设数列{an}是公差不为零的等差数列,它的前n项和为Sn,且S1、S2、S4成等比数列,则a3a1等于(  )

数列{an}是公差不为0的等差数列,设公差为d,S1,S2,S4成等比数列,则S22=S1•S4,∴( 2a1+d)2=a1•(4a1+6d),化简可得d=2a1∴a3a1=a1+2da1=

已知数列{an}的前n项和Sn是n的二次函数 且S1=-2 a2=2 S3=6 证明 {an}是等差数列

设Sn=mn²+bn+c(m≠0)为了与an区分开,二次项系数设成m了,a1=S1=-2S2=a1+a2=S1+a2=-2+2=0n=1S1=-2;n=2S2=0;n=3S3=6分别带入Sn

设Sn是公差不为0的等差数列an的前n项和,且S1,S2,S4成等比数列.(1)求a

(1)设数列{an}的公差为d,由题意,得S22=S1•S4所以(2a1+d)2=a1(4a1+6d)因为d≠0所以d=2a1,故a2a1=3;(2)因为a5=9,d=2a1,a5=a1+8a1=9a

已知等差数列{an}的公差为2,前n项和为sn,且s1,s2,s3,s4成等比数列

sn=na1+n(n-1)d/2=na1+n(n-1)s1=a1s2=2a1+2s3=3a1+6s4=4a1+12……算了半天,感觉题目是错的.再问:这是我们月考题。。。再算算???再答:题目有问题:

已知等差数列{an}的前n项和为Sn,若S33−S1=1,则数列{an}的公差是(  )

由等差数列的性质可得a1+a3=2a2,而原条件可化为:a1+a2+a33−a1=1,代入可得3a23−a1=1,即a2-a1=1故数列{an}的公差是1,故选B

设Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列,则a2a1等于(  )

由S1,S2,S4成等比数列,∴(2a1+d)2=a1(4a1+6d).∵d≠0,∴d=2a1.∴a2a1=a1+da1=3a1a1=3.故选C