首项为1,公差不为零,S1,S2,S3成等比数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:11:21
首项为1,公差不为零,S1,S2,S3成等比数列
已知等差数列{an}的公差d不为零,首项a1=2且前n项和为sn

1.因为等差数列AN的公差d不等于0,a1=2,s9=36,所以36=9*2+1/2*9*8d所以d=1/2所以a3=3,a9=6,由a3,a9,am成等比数列则a9的平方=a3*am,的am=12又

等差数{an}的公差不为零,首项a1=1,且a2a2=a1a5,则数列的前10项之和是多少?

a1=a2-d,a5=a2+3d所以a2a2=(a2-d)(a2+3d)得2da2=3dd即a2=3d/2所以a1=a2-d=1d/2=1得出d=2公差=2,首项=1,后面你会的即a10=19故S10

公差不为零的等差数列{an}中,Sn是其前n项和,且S1,S2,S4成等比数列,求数列S1,S2,S4,的公比q.

设该等差数列首项a1,公差d则S1=a1S2=2a1+dS4=4a1+6d要成等比(2a1+d)^2=a1(4a1+6d)即4a1^2+4a1d+d^2=4a1^2+6a1d即d=2a1所以S1=a1

已知等差数列an的公差d不等于零前n项和为sn若s三等于a二的平方且s1,s2,s3成等比数列.求an的通项公式

给评价在答再问:别坑我呀,先给个好评了啊再问:你不会真是骗人的吧?亏我信你,现在人都这样儿么?再答:对不起我上课了

已知{an}是公差不为零的等差数列,a1=1 a1,a3,a9成等比数列,求{an}的通项公式

设公差为d则a3=a1+2d=1+2da9=a1+8d=1+8d因为a1,a3,a9成等比数列所以a3²=a1*a9=a9∴(1+2d)²=1+8d∴d=0或者d=1又∵d≠0,∴

公差不为零的等差数列{an}的第二、三及第六项构成等比数列,则a

设公差为d(d≠0),由题意a32=a2•a6,即(a1+2d)2=(a1+d)(a1+5d),解得d=-2a1,故a1+a3+a5a2+a4+a6=3a1+6d3a1+9d=−9a1−15a1=35

若Sn是公差不为0的等差数列an的前n项和,且S1,S2,S4成等比数列,求数列S1,S2,S4的公比

S1=a1S2=a1+a2=2a1+dS4=a1+a2+a3+a4=4a1+6d因为成等比数列,所以S2的平房=S1*S4(2a1+d)的平房=a1(4a1+6d)因为d不得0解得d=2a1所以S2=

若Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列.(1)求数列S1,S2,S4的公比

S1=a1S2=2a1+dS4=4a1+6d所以(2a1+d)²=a1(4a1+6d)解得2a1=dS1=a1S2=4a1S4=16a1数列S1,S2,S4的公比是4

已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a6成等比数列.

(1)a3=a1+2d、a6=a1+5d.(a1+2d)^2=a1(a1+5d)a1^2+4a1d+4d^2=a1^2+5a1d4a1d+4d^2=5a1d因为d0,所以4a1+4d=5a1a1=4d

已知公差不为零的等差数列{an}中,a1=1,且a1,a3,a13成等比数列.

(1)设等差数列{an}的公差为d(d≠0),由a1,a3,a13成等比数列,得a32=a1•a13,即(1+2d)2=1+12d得d=2或d=0(舍去).故d=2,所以an=2n-1(2)∵bn=2

首项为4且公差不为零的等差数列的第1、7、10项正好是某一等比数列的前三项,求此等差数列的通项公式

设公差为d,则a(n)=4+(n-1)da(1)=4,a(7)=4+6d,a(10)=4+9da(1)、a(7)、a(10)成等比,则a(7)^2=a(1)*a(10)(4+6d)^2=4*(4+9d

若{An}是公差不为零的等差数列,Sn是其前项n项的和,且S1,S2,S3成等比数列 1求S1.S2.S3的公比

S1,S2,S3是等比数列,设公比为qS2/S1=qS3/S2=q又Sn为等差数列的和,设公差为dSn=a1n+n(n-1)d/2则S1=a1S2=2a1+dS3=3a1+3dS2/S1=(2a1+d

设数列{an}是公差不为零的等差数列

设该等差数列是首项为a1,公差为dS3=3a1+3(3-1)*d/2=3a1+3dS2=2a1+2(2-1)*d/2=2a1+dS4=4a1+4(4-1)*d/2=4a1+6d又:S3²=9

已知数列{a}是公差不为零的等差数列,若a1=1,且a1a2a3成等比数列an=

a1a2a3成等比数列a2^2=a1a3=a3(a1+d)^2=a1+2da1^2+2a1d+d^2=a1+2d1+2d+d^2=1+2dd^2=0d=0公差不为零的等差数列错题

已知公差不为零的等差数列{an}中,sn是其前n项,且s1,s2,s4成等比数列

s1=a1s2=2a1+ds4=4a1+6d因为s1,s2,s4成等比数列所以(s2)²=s1×s4(2a1+d)²=a1(4a1+6d)4a1²+4a1d+d²

设数列{an}是公差不为零的等差数列,它的前n项和为Sn,且S1、S2、S4成等比数列,则a3a1等于(  )

数列{an}是公差不为0的等差数列,设公差为d,S1,S2,S4成等比数列,则S22=S1•S4,∴( 2a1+d)2=a1•(4a1+6d),化简可得d=2a1∴a3a1=a1+2da1=

设Sn是公差不为0的等差数列an的前n项和,且S1,S2,S4成等比数列.(1)求a

(1)设数列{an}的公差为d,由题意,得S22=S1•S4所以(2a1+d)2=a1(4a1+6d)因为d≠0所以d=2a1,故a2a1=3;(2)因为a5=9,d=2a1,a5=a1+8a1=9a

首项为3,公差为2的等差数列,Sk为前K项的和求S=1/S1+1/S2+...+1/Sn的和

Sk=(a1+ak)*k/2=[2a1+(k-1)d]*k/2=(2+k)k所以1/Sk=[(1/k)-1/(2+k)]/2所以S=1/S1+1/S2+...+1/Sn=(1/2)[(1-1/3)+(

公差不为零的等差数列{an}的部分项ak1,ak2,ak3.,构成等比数列,且k1=1,k2=2,k3=6则k4=

ak1,ak2,ak3.构成等比^2=ak1*ak3(a1+d)^2=(a1)*(a1+(6-1)d)计算d=3a1ak4=^2/ak2=a1+(k4-1)*dd为方差(a1+5*d)^2/(a1+d