马尔科夫矩阵为什么有个特征值为1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:08:32
可对角化的矩阵的秩等于其非零特征值的个数再问:лл�������������Ϻ���û�ҵ���ȫһ��ľ��Ӱ���再答:�����ȷ~��ʦ�Ͽν��ģ���Ͳ����˰�~再问:�õ�
|A|=其特征值的乘积8/(-1)/4=-2
对角矩阵的特征值就是对角线元素,所有n阶矩阵都有n个特征值,只不过会有一部分特征值是零
此题用到结论:r(A)=r(A'A)=r(AA')那么我们只需证明A'A与AA'有相同的非零特征值就行了.设b(lamda)是A'A的非零特征值,x是A'A的属于特征值b的特征向量,则有A'Ax=bx
n阶矩阵的特征值的定义出发,我们可以得到一个求特征值的n次多项式,根据高等数学中的著名的定理:n次多项式在复数域内有n个根,当然包括重根,几重根算是几个根.故我们在复数域内有n个特征值,其中包括重根.
算错了呗,重新算吧
设r1,r2,r3分别为三个特征值,则,r1*r2*r3=|A|所以另一特征值为-2
E-BE行列式等于0可以求出,特征值就是:1(n重)然后我们验证一下:特征值的和=迹的和特征值的积=E的行列式特征向量是任意n个线性无关的向量.以n阶为例(11111.1)x1+X2.+Xn=0解这个
2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值
是的.因为AB=aB所以A^2B=A(AB)=A(aB)=aAB=a^2B一般有f(A)B=f(a)B
有n个不同的特征值可以这么说.而一般n个特征值是包括重数的,这并不能保证一个矩阵可对角化.但是退而求其次,这个矩阵在复数域上式可以相似于一个Jordan型矩阵,也就是所谓的Jordan标准型,而其中每
一般来讲特征值和特征向量只针对方阵而言.任何n阶方阵都有n个特征值(记重数),每个特征值(不记重数)至少有1个特征向量.前半句用代数基本定理证明,后半句由特征值的定义直接得.
把n个线性无关的特征向量拼成一个可逆阵P=[x1,x2,...,xn],那么AP=P=>A=I再问:лл�����Ѿ�������ˣ�һʱ��Ϳ���ܼ
如果矩阵为m阶,是不是这个矩阵就有m个特征值呢?是.(特征多项式的重根按重数计算)如果这个矩阵有r个非零特征值,是不是就矩阵的秩为r呢?是.再问:矩阵的相似与合同是什么关系呢?相似一定合同,但合同不一
别误导人家啦!错误:"秩是1的方阵一定能相似对角化"反例:010000000楼主:秩为一的三阶矩阵的若当标准型有两种可能第一种:010000000第二种:a00000000(a不为零)第一种情况下三个
实对称矩阵正交相似于对角矩阵即与对角矩阵合同而对角矩阵的主对角线上的元素即A的特征值所以对称矩阵A正定A的特征值都大于0
是对称矩阵的特征值都是实数,而且矩阵R为2则行列式为0根据特征值的积为行列式的值所以必有0特征值,不然你怎么得到行列式的值为0
选A因为|xE-AT|=|(xE-A)T|=|xE-A|
请问是B=2A的3次方-3A的2次方么?有定理,矩阵的多项式的f(A)的特征值为f(λ),λ是A的特征值,所以B=f(A),所以B的特征值为2x1-3x2=-1
是的,但不一定全是实数再问:老师举个例子吧虚数的再答:A=01-10再问:老师高数问题可以问你吗再答:那个我忘了答的不专业不敢乱答