验证罗尔定理对函数f(x)=xlnx(2-x)的区间[0,1]的正确性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:41:37
验证罗尔定理对函数f(x)=xlnx(2-x)的区间[0,1]的正确性
验证在【-1,1】上,柯西中值定理对于函数f(x)=x²,以及g(x)=x³ 不成立,并说明原因

f(1)-f(-1)/g(1)-g(-1)=0,f'(x)/g'(x)=2/3x,而在(-1,1)上不存在x,使f(1)-f(-1)/g(1)-g(-1)=f'(x)/g'(x),故不能用柯西中值定理

您能再帮我看道题不~ 验证函数f(x)=x√(4-x)在区间[0,4]上满足罗尔定理中的ξ.

f'(x)=√(4-x)-x/2√(4-x)=0则2【√(4-x)】²=x即2(4-x)=x解得ξ=3/2

对函数y=4x³-6x²-2在区间[0,1]上验证拉格朗日中值定理

[f(1)-f(0)]/(1-0)=-2f'(ξ)=12ξ^2-12ξ=-2ξ=(3±根号3)/6都满足于是存在ξ∈(0,1),使得f'(ξ)=[f(1)-f(0)]/(1-0)验证完毕

关于罗尔定理在区间[0,8]内,对函数f(x)=(8x-x^2)^(1/3)罗尔定理A不成立B成立,f'(2)=0C成立

答案的确应该是C,D不用算就能排除,因为罗尔定理的适用范围就是(0,8)这个开区间,虽然计算导数时发现f(0)和f(8)的导数也是0,但那是在更广的区间上,不能用罗尔定理去得到这个结论.

验证函数f(x)=x根号(4-x)在区间【0,4】上满足罗尔定理中的ξ 帮帮忙吧……我算不出来ξ

对于f(x)=x√(4-x),∵f(0)=f(4)=0,∴在[0,4]上,至少存在一点ξ,使f'(ξ)=0(罗尔定理)对f(x)求导,得f'(x)=√(4-x)+x*1/2*(1/√(4-x))*(-

两道微分中值定理题1,下面函数 f(x) F(x) 在区间[-1,1] 哪个满足罗尔定理 ,F(x) f(x) F(x)

1,唯一区别是F在(0,0)处可导导数定义去查,在零点处,f的导数为sin(1/x)(x->0)不存在F为xsin(1/x)(x->0)=0,很显然,sin有范围,而x独趋近於02,很显然,f在(0,

验证函数y=√(2x-x^2)在闭区间0到2上满足罗尔定理条件,并求出满足罗尔定理的∑

 再问:还没证明可导再问:罗尔定理是连续且可导的再答:说一下对y求导就可以了,因为初等函数都可以直接求导再问:哦哦!谢谢啦

mathematica 验证:拉格朗日微分中值定理对函数f(x)=sin(x)-x-1 在区间[ 0,1 ]上的正确性提

按照定理用solve求出0到1中的一点,使得f在那一点的导数等于(f[1]-f[0])/(1-0)就行f[x_]:=Sin[x]-x-1;Solve[D[f[x],x]==(f[1]-f[0])/(1

验证罗尔定理对下列函数的正确性,并求出相应的点.f(x)=1/(1+x

f(-2)=1/5f(2)=1/5f'(x)=-2x/(1+x^2)^2由f(2)-f(-2)=[2-(-2)][-2x/(1+x^2)^2]得x=0这点为(0,1)

4.验证函数f(x)=x3+x2在区间【-1,0】上满足罗尔定理的条件,并求出定理中的£

首先求取端点函数值f(-1)=(-1)^3+(-1)^2=-1+1=0f(0)=0+0=0因此f(x)的两端点函数值相等显然函数处处连续,于是满足罗尔定理必存在£使得在£处有f'(£)=0下面求出£f

验证函数f(x)=arctanx在区间[0,1]上满足拉格朗日定理的条件,并求出满足定理条件的ξ值,

f(x)在[0,1]内连续,在(0,1)上可导,即满足拉格朗日中值定理:存在一个ξ使得:f'(ξ)=(f(b)-f(a))/(b-a)=(f(1)-f(0))/(1-0)=π/4f'(ξ)=1/(1+

验证函数f(x)=arctanx在闭区间[0,1]上满足拉格朗日中值定理条件,并求出ξ的值.要详细的过程

显然f(x)=arctanx在[0,1]上连续且可导f'(x)=(arctanx)'=1/(1+x^2)根据拉格朗日中值定理,存在ξ,0

验证罗尔定理对函数d(x)=2x^3+x^2-8x在区间{-1/2,2}上的正确性.

f(x)=2x^3+x^2-8x,在区间[-1/2,2]上连续,f(-1/2)=4,f(2)=4.f'(x)=6x^2+2x-8=2(x-1)(3x+4).故在区间[-1/2,2]上存在一点x=1,使

验证罗尔定理对函数f(x)=xln(2-x)在区间[0,1]上的正确性

由已知f(x)在[0,1]上连续,在(0,1)上可导.且f(0)=f(1)=0f'(x)=ln(2-x)-x/(2-x)它在[0,1]上连续,且f'(0)*f'(1)=(ln2)*(-1)=-ln2

为什么区间为[-1,1]的函数f(x)=|x|不满足罗尔定理

0在这个区间上,0不可微.洛尔定理的应用前提要求这个区间处处可微.

验证函数f(x)=x-x^3在区间[0,1]上满足罗尔定理的条件,并求出满足定理条件的ξ值

f(x)=x-x^3在区间(0,1)上是连续的,而x→0+时limx-x^3=0=f(0);x→1-时limx-x^3=0=f(1),所以函数f(x)=x-x^3在区间[0,1]上连续,.又因为多项式

题目(1):对函数f(x)=X^3,g(x)=X^2+1在区间[0,∏/2]上验证柯西中值定理的正确性.

[f(π/2)-f(0)]/[g(π/2)-g(0)]=(π/2)³/[(π/2)²+1-1]=π/2f'(x)/g'(x)=3x²/(2x)=3x/2令x=π/3则[f

验证f(X)=X^3-3X^2+2X在区间【0,2】上满足罗尔定理的条件,并求出罗尔定理结论中的£值.

f(0)=0f(2)=0f'(x)=3x^2-6x+2存在ξ∈[0,2]使得f'(ξ)=3ξ^2-6ξ+2=0求根公式得ξ=1±√3/3都在[0,2]范围内

对函数y=4X³-6X²-2在区间[0,1]上验证拉格朗日中值定理,求解(写的尽量易懂些...

[f(1)-f(0)]/(1-0)=-2f'(ξ)=12ξ^2-12ξ=-2ξ=(3±根号3)/6都满足于是存在ξ∈(0,1),使得f'(ξ)=[f(1)-f(0)]/(1-0)验证完毕