sig多少的值才表明显著
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:13:04
因为你不会spss操作,但是在那里乱在点我经常帮别人做这类的数据统计分析的再问:会不会是数据有问题造成的呢
常量sig值高于0.05这个回归仍然有效,这仅仅表明线性回归的截距项可以被设定为0,也就是经过原点.但是,如果你将截距项设为0,则该方程的拟合优度指标值(R的平方)将是不准确的,即使你重新拟合.再问:
t值越大,sig值越小.sig值小于0.01或者0.05或者0.1就是显著异于0了.
SIG的意思是整点报时
原假设是“X1的系数为0”,sig值低于0.05就可以拒绝原假设啦再问:也就是说,原假设是x1的系数为0,而不是我自己设置的那个假设吧?我都晕了一下午了。。。如果是我自己设置的假设,那就互相矛盾了再答
这个表是方差分析表,也即F值检验,一般看检验结果,都是看F值对应的概率值,即sig值,两个数据表达的检验结果一样,但不是同一概念.上面的表格F值对应的sig值是0.000
小弟我也是自学的,学艺不精您别见怪:方差不齐也可以看的,方差不齐只是说明两组数据的离散情况不同,如果是来自同一母体可能会有问题,但如果T是远小于0.05,说明还是有显著差异的,你现在要做的是确定这个离
最后一个渐近显著性就是sig值,你这是汉化版的,没有显示sig值
常数项是否检验有争议,多数学者倾向于不对常数项检验.可以把常数项的复选框去掉再做一遍看看结果会不会更漂亮
是显著的,没什么好理解的如果没法理解kendall系数,干脆就让人帮你做分析我经常帮别人做这类的数据分析的
t值表示变量显著性检验的t统计量,sig.则是系统计算出的相应显著性统计量出现的概率.对于x变量,第二张表,F检验sig.值0.093(假设理论显著性水平α为0.05)表明x变量不具有方差齐性,因此t
正交实验的数据处理使用的是方差分析法,其原假设是各组平均值之间无显著差异.在显著性水平取0.05的前提下,sig值(也就是统计学教科书的P值)大于0.05就表明不能否定原假设,也就是这个因素对结果没有
根据费希尔的理论,当p值小于0.05时在统计上是显著的,一般人们遵循费希尔设定的0.05作为显著性水平.但具体来说,还应根据预先设定的显著性水平来判断.
因为F检验的sig值>0.05所以齐方差性满足,只看第一排的T值,因为T检验的sig值=0.004再问:我知道结果表示什么意思。我会分析结果。现在我意思是说,这个结果如何在论文中描述,要是作图怎么表示
在LinearRegression对话框中,单击Method栏的下拉菜单,选择Stepwise;单击“Options”按钮,更改UseprobabilityofF栏中“Entry”的值为0.1,“Re
受教育2和获工作时间9的相关系数在.001水平显著,相关系数为0.259,这应该是统计上的标准表达方式.这个结果就表明这两个变量具有共变关系,受教育2越高,获工作时间9越高.这样解释就行了吧另外好像一
理论上是,但可用你的专业知识来解释,样本量过小或代表性不显著等
个人建议你是先做所有变量的多元回归,因为你在做自变量与因变量间的相关系数时,是排除了其他变量的影响,而在做多元回归时,变量间有可能存在影响的.然后再看回归的结果,比如R平方,F值,方程的显著性,系数的