sin t ln(1 sint)极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:18:04
解题思路:应用牛--莱公式及微分的意义。。。。。。。。。。。。。。。。。。。。。解题过程:fj1
先取对数,再洛必达,就出来了,这类题都这么做.
a不为2k*pi时,极限为无穷大.a是2k*pi时,原式=e^x/x*(cosx-cosa)=e^x/x*(cosx-1)等价无穷小代换得极限为0.你写的不清楚,我尽量猜测你的真实意思,应该没错,不过
这个积分要用正弦积分Si(x)表示不定积分为(Cos(2x)-1)/2x+Si(2x)+C这个积分在[0,1]上的值为Si(2)-(Sin1)^2
这个在高数课本里有个公式,sint)^4从0到π/2的积分是:3/4*1/2*π/2同理:sint)^6从0到π/2的积分是:5/6*3/4*1/2*π/2结果就不说了第二个积分前两项不说,应该会,就
lim(x→0)∫上x下0(t-sint)dt/x^3(0/0)=lim(x→0)(x-sinx)/(3x^2)(0/0=lim(x→0)(1-cosx)/(6x)=lim(x→0)(x^2/2)/(
点击[http://pinyin.cn/1aSld8B6HG2]查看这张图片.[访问验证码是:924505请妥善保管]能看见么?不能看见告诉我~再答:
中间那步不用那样的.因为d(sint)=costdt,先把cost换到d里面就是:原式=∫【1/(sint^2)】dsint设sint=x化为∫(1/x^2)dx=-1/x+C再把x换回sint
极限lim(t-sint)/t^3(t趋近0)=limt/t^3-limsint/t^3这一步出现了问题,后边的两个极限都是不存在的,所以不能这么写可以用洛必达法则:lim(t-sint)/t^3=(
lim(x->0){∫[0,x]sintln(1+t)dt-1/3X^3+1/8x^4]}/(x-sinx)(e^x^2-1)【首先用Taylor公式:x-sinx=x^3/3!+o(x^3),e^(
∫sint/(cost+sint)dt=(1/2)∫[(sint+cost)+(sint-cost)]/(cost+sint)dt=(1/2)∫dt+(1/2)∫(sint-cost)/(cost+s
原式=Lim(x->0)sinx^3/4x^3=Lim(x->0)x^3/4x^3=1/4
y=arcsinx是正弦函数y=sinx,x∈[-π/2,π/2]的反函数t=arcsinx中,x是正弦值,t是[-π/2,π/2]内的角,tx所以令t=arcsinx,就有x=sint
y=sinx,x∈[-π/2,π/2]上的反函数为y=arcsinx.t=arcsinx,所以x=sint
积分项与x无关,对x求导结果为0.
罗比达法则=x(x-sinx)/2x^4=(x-sinx)/2x^3=[x-(x-x^3/3!+o(x^3))]/2x^3=1/12再问:(x-sinx)/2x^3=[x-(x-x^3/3!+o(x^
∫[1/(sint)^2]dt=-∫dcott=-cott+C∫[1/(cost)^2]dt=∫dtant=tant+C上面这两个属于基本公式,最好记住,对做题有好处.
"有界量乘无穷大量是无穷大"——没有这个结论,只有“有界量和无穷小量的乘积是无穷小量”判定无穷大量的时候至少需要其绝对值有非零的下界,此时仅仅有界不够第一种做法是正确的,并且很容易用极限的定义直接验证
a∫1/sintdt=a∫1/(2sin(t/2)cos(t/2))dt【倍角公式】=∫1/(tan(t/2)[cos(t/2)]^2)d(t/2)【凑微分法】=∫1/(tan(t/2))d(tan(