sin(π 3 4x)递减区间sin的递减区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:05:52
π/2+2kπ再问:换元法有没有?再答:令3x+π/4=t,y=2sint的递减区间是:π/2+2kπ
1:y=2sin(π/4-x)=-2sin(x-π/4)单调增:2kπ+π/2≤x-π/4≤2kπ+3π/2,2kπ+3π/4≤x≤2kπ+7π/4单调减:2kπ-π/2≤x-π/4≤2kπ+π/2,
因为y=sinx的单调递减区间是[2kπ+π/2,2kπ+3π/2]所以y=sin2x的单调递减区间是[kπ+π/4,kπ+3π/4]所以y=sin(-2x)的单调递减区间是[kπ-3π/4,kπ-π
y=sin(x+π/2)cos(x+π/6)=cosx*cos(x+π/6)=cosxcosx1/2根号3+1/2cosxsinx=1/2根号3cos^2x+1/4sin2x=1/2根号3*1/2(1
利用y=sinx的单调递减区间,可得π2+2kπ≤2x+π6≤3π2+2kπ∴kπ+π6≤x≤kπ+2π3∴函数y=3sin(2x+π6)的单调递减区间[kπ+π6,kπ+2π3](k∈Z)故选D.
∵y=sin(−2x+π6)=-sin(2x-π6)令−π2+2kπ≤2x−π6≤π2+2kπ则−π6+kπ≤x≤π3+kπ∴函数y=sin(−2x+π6)的单调递减区间[−π6+kπ,π3+kπ],
∵y=sin(π4-2x)=-sin(2x-π4),由2kπ-π2≤2x-π4≤2kπ+π2(k∈Z)得:kπ-π8≤x≤kπ+3π8(k∈Z),∴y=sin(π4-2x)的单调递减区间为[kπ-π8
令2kπ+π2≤x+π4≤2kπ+3π2,k∈z,求得2kπ+π4≤x≤5π4+2kπ,故函数y=sin(x+π4)的单调递减区间是[2kπ+π4,5π4+2kπ],k∈z,故答案为:[2kπ+π4,
f(x)=log(1/2)X为减函数X>0所以sin(x-π/4)>0所以x-π/4
y=sin(-2x+π/6)=sin[π-(-2x+π/6)]=sin(2x+5π/6)则递减区间是:2kπ+π/2≤2x+5π/6≤2kπ+3π/2得:kπ-π/6≤x≤kπ+π/3即减区间是:[k
相关法sinx的单调地减去间是[2kpi+pi/2,2kpi+3pi/2]所以pi/3-x应该属于[2kpi+pi/2,2kpi+3pi/2]2kpi+pi/2=
y=sin(-2x+π/3)=-sin(2x-π/3)令2kπ-π/2
sinx的减区间是(2kπ+π/2,2kπ+3π/2)所以这里2kπ+π/2
函数y=sinx的递减区间是[2kπ+π/2,2kπ+3π/2],k∈Z.对称中心是(kπ,0),k∈Z.对称轴是x=kπ+π/2,k∈Z.利用换元法可以求出函数y=sin(x/3+π/6)的递减区间
[-k¥-¥5/8,-k¥-¥/8]
正弦函数y=sinx的递减区间为[2kπ+π/2,2kπ+3π/2](k∈Z)所以函数y=sin(x+π/3)的递减区间为{x|2kπ+π/2≤x+π/3≤2kπ+3π/2,k∈Z}={x|2kπ+π
sinx单调递减区间是(π/2+2kπ,3π/2+2kπ).所以,当2x+π/3∈(π/2+2kπ,3π/2+2kπ)时,函数单调递减x∈(π/12+kπ,7π/12+kπ).(k=0,1,2,3……
由π2+2kπ≤x+π3≤3π2+2kπ k∈z得π6+2kπ≤x≤7π6+2kπ取k=0,得函数的一个单调减区间为[π6,7π6]∵[π6,π]⊂[π6,7π6]故选B
f(x)=sin^2x=1/2-[cos2x]/2递减区间(0,派/4)并(3pai/4,pai)再问:1/2-[cos2x]/2是sin^2x得出的公式麽?再答:根据cos2x=(cosx)^2-(
y=sin(2x+π/6)的单调递增区间是?递减区间是?解2X+PAI/6=-PAI/2,得X=-PAI/3,此时得最小值解2X+PAI/6=PAI/2,得X=PAI/6,此时得最大值周期=PAI,-