高数:证明当x→0时,arctanx-x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:20:40
高数:证明当x→0时,arctanx-x
高数证明题-连续性已知 f 在R上连续,当x属于有理数,f (X) = 0.证明:f (x) 在R上都为0

试着证明一下.反证法.假设f(x)在某一个无理数点不为0,那么不妨设为f(x0)=a>0,根据连续函数的保号性可知,存在某一个x0的邻域e,在这个e内f(x)>0,实数有下列性质(实数的稠密性):任意

高数极限证明题:根据定义证明y=x/(1+x),当x趋于0时无穷小,请写出步骤,

任给ε>0,因为ε可任意小,所以不妨设ε再问:当|x|

高数 证明二元函数f(x,y)=(xy)/(x平方+y平方)当(x,y)倾向(0,0)时极限不存在

如果上述二元函数在(x,y)趋近(0,0)时的极限存在则要求以任何路径趋近都要极限存在.显然我们只要找到存在一条路劲使得该函数的极限不存在即可.观察函数发现上下均为二次,我们只要凑出1/∞即可,取路径

高数的证明题,当构造辅助函数 F(x)后,如何证明F(1)=f(1)=F(0)?,

设F(x)=xf(x)在〔0,1〕上连续,在(0,1)内可导,且f(1)=af(a)=F(a)=F(1)(0

高数极限证明:lim(x→0) (2x+1)\(x-1)=-1 ..

对于|(2x+1)/(x-1)+1|=|(3x)/(x-1)|=3*|x-0|/|x-1|限制x的范围:-1/2

如何用高数证明当x趋于正无穷大时sinx除以根号x的极限为0

当x趋于无穷大的时候,sinx的极限不存在,但是|sinx|

初步学习高数,遇到困惑:根据定义证明y=(x-3)/x,当x趋于3时无穷小,

.不会再问:拜托大家了。。。再答:x趋于3时|y-0|=|(x-3)/x|=|x-3|/3对于给点的任意一实数M,当0

高数证明题,当X大于等于0时,e的x平方大于等于1+X.

y=e^x-(1+X)y'=(e^x)'-(1+X)'=e^x-1y''=e^x当x>=0时,y'>=0,y''>=0y是增函数,所以当X大于等于0时,e的x平方大于等于1+X.

高数证明无穷大的问题作业中一个证明无穷大的不解:根据定义证明:当x->0时 函数f(x)=(1+2x)/x 是无穷大.我

你的证法似乎有点问题忽略了x为负数的情况x为负数时1/|x|+2>|f(x)|实际上你把|f(x)|给放大了答案里的1/|x|>X+2是这么来的给定任意X(无论多大),欲使|f(x)|>X只需证明存在

f(x)为非0函数高数f(x+y)=f(x)f(y) 当x=0时的导数为1证明f(x)的导数等于f(x)

f(x+y)=f(x)f(y)putx=y=0f(0)=f(0)f(0)f(0)=1f'(x)=lim(y->0){[f(x+y)-f(x)]/y}=lim(y->0)[f(x)f(y)-f(x)]/

【大一高数】当x→0时 求y=e^x -x-1的等价无穷小

就是看e^x的展开式因为e^x=1+x+x^2/2+o(x^2)所以e^x-1-x=x^2/2+o(x^2)即e^x-1-x~x^2/2

大一高数证明题证明当x→0时,有:arctanx~x

令t=arctanx,则x=tant,x→0,则t→0,即,求证t→0时t=tant,tant=sint/cost,tant/t=(sint/t)*(1/cost),t→0时,sint/t=1,1/c

高数!简单的证明题!证明:函数F(x,y)=xy^2/(x^2+y^4)当(x,y)-->(0,0)时极限不存在.

LZ快乐男孩的做法是错误的,虽然分母极限为0,但分子的极限也为0,这种属于0/0型的极限,这种极限可能存在,也可能不存在.实际上这是一道比较简单的题目.只要找到两条不同的路径->(0,0)得出的极限值

高数证明:y=xsin(1/x)为当x→0时的无穷小

证明:由于对于任何x都有|sinx|0,即,当x->0时,xsin(1/x)是无穷小.

如何证明当x趋于0时1-cos2x是x的高阶无穷小

再答:相除等于1是等价无穷小再答:0是高阶无穷小无穷是低阶

高数问题:证明反常积分:∫b a dx/(x-a)^q 当0

考虑不定积分∫dx/(x-a)^q当q=1时,∫dx/(x-a)=ln|x-a|+C,∫badx/(x-a)^q=ln(b-a)-ln0根据对数性质显然发散当q≠1时,∫dx/(x-a)^q=∫(x-

证明:当X→0 时,arctanX~X

利用洛必达法则limarctanx/x=lim1/(1+x^2)=1所以当X→0时,arctanX~X

高数证明,证明:当x→0时,arctanx~x

令t=arctanx,则x→0等价于t→0.所以limarctanx/x(x→0)=limt/tant(t→0)=1故arctanx~x