高数中数列收敛准则
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:18:19
归纳法得:xn≥√ax(n+1)-xn=1/2×[a/xn-xn]=1/2×(√a+xn)(√a-xn)/xn≤0所以,xn单调减少所以,xn单调有界,极限存在
我先说方法,你先试试第一步证明该数列单调递增,即证x(n-1)再问:怎么证它的单调性呀再答:用数学归纳法来证:当n=1时,x1=1x2=1+x1/(1+x1)=1+1/2=3/2显然有x1
这题明显少条件,如果bn是单调的就可以了.否则结论不成立.反例:an=(-1)^n/n^(1/2),级数an收敛.bn=(-1)^n/n^(1/2),数列bn收敛于0,但级数anbn=级数1/n是发散
这个级数一般不采用柯西准则,用比值判别法合适:由 lim(n→∞){[10^(n+1)]/[(n+1)!]}/(10^n/n!)=lim(n→∞)[10/(n+1)]=0根据比值判别法得知该级数
1.x1=√2
证明这个数列单调递减且有上界即可.1、用数学归纳法证明这个数列有上界:(1)当n=2时,x2=(1/2)(x1+a/x1)≥√a成立;(2)假设当n=k时,xk≥√a成立,则必有xk>0于是x(k+1
再问:谢谢你
高等数学是大学的一门课程,大部分专业都要学,具体包括函数导数微积分空间解析几何重积分,级数等;他是理工科的基础知识,很多学科都要用到它单调有界收敛准则是如果数列不仅有界且单调,那么这个数列一定收敛
|a(n+p)-a(n)|=1/(n+1)^2+...+1/(n+p)^2
不妨设数列单调增,因为有上界所以有上确界,设为A.则an0,存在aN>A-§,则由an单调增知,对任意的n,m>N,有A>an>A-§,A>am>A-§.又因为从而有|an-am|
有:xn=√(2+x(n-1))∵1由数学归纳法:假设:x(n-1)xn=√(2+x(n-1))xn+1=√(2+xn)∴由单调有界原理:lim(n->∞)xn存在,根据极限保序性,设:lim(n->
根据柯西收敛准则,只需证明|a(n+p)-an|
X1=1,Xn+1=Xn/(1+Xn)+10X(n+1)-Xn=Xn/(1+Xn)+1-X(n-1)/(1+X(n-1))+1=(Xn-X(n-1))/((1+Xn)(1+X(n-1))由归纳法:X(
没细想但是第二个比较好做把分母都进行放缩让n2
对任意epsilon>0,存在正整数N=[1/epsilon]+1,使得对任意n>N,任意正整数p,有|x(n+p)-x(n)|=1/(n+1)!+1/(n+2)!+…+1/(n+p)! =1/
“柯西收敛原理”是数学分析中的一个重要定理之一,这一原理的提出为研究数列极限和函数极限提供了新的思路和方法. 在有了极限的定义之后,为了判断具体某一数列或函数是否有极限,人们必须不断地对极限存在的充
不懂哎
单调增加有下界的数列不一定有极限,就是这样再问:举个反例看看再答:y=e^x单调递增,下界y=0,在x趋于正无穷时