sinwx 根号3coswx在0到p有三个零点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:27:09
f(x)=a*b=√3sinwx·coswx+coswx·coswx=sin(wx+π/6)+1/2,(1)f(x)最小正周期为π,所以w=2;(2)当0
(1)f(x)=a·b=(sinwx)^2+√3sinwxcoswx=1/2+(√3/2sin2wx-1/2cos2wx)=1/2+sin(2wx-π/6)因T=2π/2w=π,即w=1于是f(x)=
f(x)=coswx(根号3*sinwx+coswx)=(根号3)coswxsinwx+(coswx)^2=[(根号3)/2]sin2wx+(cos2wx)/2+1/2=sin(2wx+π/6)+1/
f(x)=(√3sinwx-coswx)coswx+1/2=2sin(wx-π/6)coswx+1/2=sin(wx-π/6+wx)+sin(wx-π/6-wx)+1/2=sin(2wx-π/6)-s
f(x)=a*b-1/2=(coswx,sinwx)(coswx,√3coswx)-1/2=cos²wx+√3sinwx*coswx-1/2=1/2*cos2wx+√3/2sin2wx=si
已知向量a=(根号3sinwx,coswx),b=(coswx,-coswx)(w>0),函数f(x)=ab+1/2的图像的两条相邻对称轴间的距离为π/4..(1):求函数f(x)的单调递增区间(2)
(1)f(x)=m^2+mn+t=[(根号3)sinwx]^2+(根号3)sinwx*coswx+t=3(sinwx)^2+(根号3)sin2wx/2一系列整理=2sin(2wx-π/3)/(根号3)
(1)f=a*b+1/2=√3sinwx*coswx-coswx*coswx+1/2=(√3/2)sin2wx-(1/2)cos2wx(cos2x、sin2x的变形公式)=sin(2wx-π/6)这个
∵f(x)=向量.向量b.∴f(x)=√3sinωx*cosωx-cos^2ωx.f(x)=(√3/2)2sinωxcosωx-(1+cos2ωx)/2.=(√3/2)2sinωxcosωx-(1/2
f(x)=m·n+|m|=1=m.n+1m.n=0=cos^2wx+2根3coswxsinwx-sin^2wx=cos2wx+根3sin2wxctan2wx=-根3,2wx=-π/6+kπ,k=0,1
f(x)=向量m.向量n=√3sinωxcosωx-cos^2ωx.f(x)=(√3/2)sin2ωx-(1+cos2ωx)/2.=sin(2ωx-π/6)-1/3.ω=2π/(π/2).∴ω=4.
稍等再答:f(x)=(√3sinwx+coswx)*cosx=√3sinwxcoswx+coswxcoswx=√3/2*2sinwxcoswx+coswxcoswx=√3/2*sin2wx+(1+co
a·b=-(coswx-sinwx)(coswx+sinwx)+√3sin(2wx)=√3sin(2wx)-cos(2wx)=2sin(2wx-π/6)故:f(x)=2sin(2wx-π/6)+λ关于
请检查题目:f(x)=向量a*向量b?再问:你说的没错我打错了再答:f(x)=向量a*向量b=(coswx-sinwx)(-coswx-sinwx)+2√3sinwxcoswx=-cos2wx+√3s
(1)直接根据题目意思一步步求解就可以了,没有别的想法.在化简过程中只要注意两点:一个是二倍角公式的应用,另外一个是三角和公式的应用.最后根据f的最小值及对称轴来确定t,x.(2)先代入f求C,再根据
(1)∵f(x)=cos²ωx-sin²ωx+2√3sinωxcosωx=cos2ωx+√3sin2ωx=2sin(2ωx+π/6)又题意可得T=π,∴ω=1,∴f(x)=2sin
根据向量的乘法,a·b=√3sinwxcoswx-cos^2wx=√3/2sin2wx+(cos2wx-1)/2+1/2=√3/2sin2wx+1/2cos2wx=sin(2wx+π/3)该图像的两相
解题思路:先化为y=Asin(wx+α)的形式,在根据其性质和图像特征进行解决。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://d
f(x)=√3sinwxcoswx+cos^2wx=1/2(2cos^2wx-1)+1/2+√3/2sin2x=1/2cos(2wx)+√3/2sin(2wx)=sin(2wx+π/6)T=2π/2w
f(x)=√3(coswx)^2+sinwxcoswx+a=根号3(cos2wx+1)/2+sin2wx/2+a=sin(2wx+π/3)+√3/2+a,f(x)的图像在y轴右侧的第一个最低点的横坐标