sinx siny-sin(x y)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 12:12:42
sinx siny-sin(x y)
e^x+e^y=sin(xy),求dy/dx.怎么求

将y看成是关于x的函数即y=f(x)我们在求导的同时要记得y也要对x求导即dy/dx我们两边分别对x求导得e^x+e^y*dy/dx=cos(xy)*(y+x*dy/dx)移项e^x-y*cos(xy

lim[1+sin(xy)]^(xy)其中x,y均趋近于0

如果是1/xy次方=lim{(1+sin(xy))^(1/sin(xy))}^sin(xy)/xy=e.如果是xy次方,就是1再问:我开始也认为很简单嘛=1,但老师给的答案是e再答:如果是xy次方,就

求函数z=sin(xy)二阶偏导数

一阶dz/dx=ycosxydz/dy=xcosxy二阶d^2z/dx^2=y^2cosxyd^2z/dy^2=x^2cosxy还有混合导数相等就写一个了=cosxy-xcosy

设y=y(x)由方程e^xy+sin(xy)=y确定,求dy/dx.

e^(xy)+sin(xy)=y(y+xy')e^(xy)+(y+xy')cos(xy)=y'y'=(ye^(xy)+ycos(xy))/(1-xe^(xy)-xcos(xy))

二维随机变量XY的联合概率密度f(x,y)=(1/2π)(1+sinxsiny)e^((x^2+y^2)/-2) 怎么.

可以先分别求X,Y的边缘函数fx和fy,注意到x,y是对称的,实际上只要求一个就可以了,求出fx,直接把x换成y,就是fy,然后fx*fy不等于f(x,y)即可.回答一下jjl123454321的质疑

z=sin(xy)+cos^2(xy)一阶偏导数

∂Z/∂x=y*cos(xy)-2cos(xy)*sin(xy)*y=y*cos(xy)-y*sin(2xy)∂Z/∂y=x*cos(xy)-2cos(

设sin(x+y)=xy,求dy/dx.

cos(x+y)(1+y')=y+xy'dy/dx=y'=[y-cos(x+y)]/[cos(x+y)-x]

z=sin(xy)+cos(的平方)(xy) 求函数的偏导数,

Zx=ycos(xy)-2ycos(xy)sin(xy)=ycos(xy)-ysin(2xy)Zy=xcos(xy)-xsin(2xy)

lim[sin(xy)/xy],x趋向2,y趋向0,求极限

令u=xy,lim_{u->0){sin(u)/u}=1.

大学隐函数求导问题 cos(xy)=-sin(xy)(y+xy') 为什么不是 cos(xy)=-

应经求过导了先整体对cos求导,再对xy求导,根据乘法的求导规则就是y+xy'

sin(xy)+y^2-e^2 求dx/dy

三种方法1式中同时对x求导-(y+xy‘)cosxy+2yy'=0解出y’2式中同时取微分d{sin(xy)+y^2-e^2}=dsin(xy)+dy^2-de^2=-cosxydxy+2ydy=-c

多元函数极限lim sin(xy)/x (x.y) -> (0.2) = lim {[sin(xy) / xy ] *

limsin(xy)/x(x.y)->(0.2)=lim{[sin(xy)/xy]*y}=im[sin(xy)/xy]*(limy)(x.y)->(0.2)=1*2=2这里把(xy)看作一个整体,当(

xy-sin(πy^2)=0 求dy/dx

y+xy'-cos(πy²)2πyy'=0y=[2πycos(πy²)-x]y'y'=y/[2πycos(πy²)-x]即:dy/dx=y/[2πycos(πy²

怎么证明两角和的余弦公式Cos(x+y)=CosxCosy-SinxSiny

第一个公式的证明:右边=2*sin[(A+B)/2]*cos[(A-B)/2]=2*[sin(A/2)*cos(B/2)+cos(A/2)sin(B/2)]*[cos(A/2)cos(B/2)+sin

怎么证明两角和的余弦公式 Cos(x+y)=CosxCosy-SinxSiny

怎么证明两角和的余弦公式 Cos(x+y)=CosxCosy-SinxSiny那个答案谁写的?怎么用后面的公式,证前面的结论了.这个证明方法应该是解析法

怎么证明两角和的余弦公式 Cos(x+y)=CosxCosy-SinxSiny

看一下高中数学教材,里面有这个公式的推导.

sin(xy)=x 求dx/dy

x/[sec(xy)-y]dx/dy.

若cosxcosy+sinxsiny=12,sin2x+sin2y=23,则sin(x+y)= ___ .

∵cosxcosy+sinxsiny=12,∴cos(x-y)=12.∵sin2x+sin2y=23,∴sin[(x+y)+(x-y)]+sin[(x+y)-(x-y)]=23,∴2sin(x+y)c